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 Introduction 

Earthquake rates for portions of the Central and Eastern United States (CEUS) have increased 

dramatically since about 2009. The majority of these earthquakes are classified as induced 

because they are considered to be related to wastewater injection during oil and gas production, 

rather than tectonic activities [12]. Quantitative seismic loss assessment is needed to address 

the risks posed by these frequent, potentially damaging earthquakes. Since historical ground 

motion records that match the possible future earthquake scenarios in this region are not 

available, simulated records can be adopted to evaluate the seismic loss potential. For ground 

motion simulation, we adopt a stochastic approach, recognizing the lack of detailed  

geophysical information for the CEUS [13]. The simulated ground motion records capture the 

intensity, duration, spectral content and peak values of actual ground motions, through use of 

parameters that characterize the evolving intensity, predominant frequency and bandwidth of 

the ground motion records. In addition to losses to individual buildings and infrastructure, 

stakeholders are interested in understanding the seismic loss for the types of events that have 

and could occur over the region. A number of studies [1, 2, 5, 9, 11] have demonstrated that the 

spatial correlation in ground motions can significantly affect the outcome of seismic loss 

estimates for spatially distributed structures/infrastructure. This finding emphasizes the 

importance of incorporating the spatial correlation characteristics of ground motions in the 

simulation approach. 

In this paper, we work towards a regional seismic loss assessment for a portfolio of buildings 

located in a CEUS city subjected to several induced earthquakes. As the first step towards this 

goal, in this study we develop a stochastic ground motion simulation framework that 

specifically considers spatial correlations between simulation parameters that is suitable for 

regional seismic risk assessment in this region. Specifically, we first estimate spatial correlation 

characteristics between the simulation parameters using ground motion records from the 1999 

Chi-Chi earthquake. This event is very well recorded, with about 400 records available in the 

Abstract: In this study, we propose a stochastic ground motion simulation 

framework that explicitly considers the spatial correlation of ground motions and 

thereby is suitable for regional seismic risk assessment. We first investigate the 

spatial correlation characteristics of the simulation parameters; based on estimated 

simulation parameters and their spatial correlations using ground motion records 

from Chi-Chi earthquake, we then present a simulation example to illustrate the 

importance of incorporating the spatial correlation of the simulation parameters. 

Future work will apply the framework in risk assessment from induced earthquakes.  



PEER NGA database. In addition, a number of researchers [3, 4, 6, 8] have studied the spatial 

correlation characteristics of ground motion parameters (e.g., peak ground acceleration, PGA; 

spectral acceleration, SA; and Arias intensity, IA) based on these records; here, we extend these 

studies to the other ground motion parameters needed for the stochastic simulation. As an 

illustration, we then present an example with simulated ground motion records for 5 sites based 

on the estimated simulation parameters and their spatial correlation characteristics. Finally, we 

also explore the use of stochastic simulation parameters to characterize the recorded ground 

motions from an induced earthquake ground motion database. These efforts lay the groundwork 

for a more extensive and systematic study of the simulation parameters and spatial correlation 

characteristics that will make possible simulation of more realistic ground motions, and 

consequently improve the accuracy of regional loss estimation. 

 Stochastic Ground Motion Simulation Framework for Regional 

Seismic Risk Assessment 

2.1 Stochastic Ground Motion Simulation Approach and its Parameters 

The stochastic ground motion simulation approach developed by Rezaeian and Der Kiureghian 

[13] is employed here. This nonstationary stochastic approach provides a convenient method 

of generating synthetic ground motions that have characteristics similar to those of real 

earthquake ground motions. The simulated ground motion can be thought of as white noise 

excitation filtered through a linear single-degree-of-freedom oscillator with evolving vibration 

frequency and a time modulation function to achieve spectral and temporal nonstationarity. 

In this approach, ground motions are characterized by 6 model parameters that have physical 

interpretations: 3 parameters define the time modulation function and 3 parameters control the 

evolving predominant frequency and bandwidth of the ground motion. The time modulation 

function 𝑞2(𝑡, 𝜶) can be written as proportional to a gamma probability density function: 

 𝑞2(𝑡, 𝜶) = 𝛼1
2𝑡(2𝛼2−1)−1𝑒𝑥𝑝⁡(−2𝛼3𝑡) (1) 

where 𝛼1 , 𝛼2  and 𝛼3  are model parameters that are related to the Arias intensity, IA; the 

significant duration, D5-95, defined as the time between 5% to 95% of IA; and the time to the 

middle of the strong ground motion phase, tmid, defined as the time to reach 45% of IA. The 

spectral nonstationarity is controlled by 𝜔mid, the filter frequency at tmid, and 𝜔′, the rate of 

change of the filter frequency with time; the bandwidth (of the ground motion) is defined by 

the damping ratio of the filter, 𝜁𝑓. 

The stochastic simulation approach starts with a set of seed motions representative of the 

seismic environment of interest. Once the 6 model parameters are identified for each seed 

record, marginal probability distributions are assigned to each parameter based on the 

observations in the seed record set. To relate the model parameters to an earthquake scenario, 

an empirical regression that is analogous to a ground motion prediction equation can be 

developed for each model parameter. To facilitate the development of these regressions, the 

stochastic model parameters are transformed to standard normal space, based on the empirical 

marginal cumulative distribution for each, and denoted as vi (i = 1, 2, … 6). The standard 

deviation associated with each regression represents the uncertainty in the model parameter that 

captures its variability across the simulated ground motions.  



To simulate ground motion records for an earthquake scenario, one can randomly sample the 

transformed model parameters vi (i = 1, 2, … 6) based on the prediction equations. Then, vi are 

transformed back to the original model parameter space (IA, D5-95, tmid, 𝜔mid, 𝜔′, 𝜁𝑓) according 

to their fitted marginal probability distributions. The time modulation functions and the white 

noise filter can then be determined and, hence, the ground motions can be generated. This 

procedure is repeated multiple times to obtain a suite of simulated ground motions. 

2.2 Spatial Correlation Characteristics of Simulation Parameters 

The simulation procedure in the previous section is generally oriented toward ground motion 

simulation at a single site, where the potential correlations between model parameters for 

spatially distributed sites can be ignored. As a result, we expect the simulated ground motion 

may not be consistent with observed spatial correlation characteristics. If such simulations are 

adopted in seismic risk assessment of spatially distributed assets, as shown by previous studies 

[5, 9, 11], the aggregate loss estimate will be biased. In the following, we develop spatial 

correlation models for each simulation parameter based on historical ground motion records 

from the 1999 Chi-Chi earthquake. These can be integrated into the simulation procedure by 

developing spatial correlation models that can be used when randomly sampling the model 

parameters for the simulation at each site. Spatial correlations among each model parameter for 

different ground motions are calculated based on the regression residuals. 

2.2.1 Ground Motion Records 

The ground motion records from the 1999 Chi-Chi earthquake obtained from the PEER NGA 

West database [10] are adopted in this study. After discarding poor-quality data recorded with 

older-type instruments, we selected a total of 389 ground motion records. This is the same 

dataset used in a previous study focused on spatial correlation of PGA and SAs [7]. The surface 

projection of the finite fault and the spatial distribution of the selected records shown in Figure 

1(a) indicates very good coverage over the island of Taiwan and varying source-to-site 

distances.  

  

Figure 1: Selected ground motion records from the 1999 Chi-Chi earthquake: (a) locations of recording stations 

and surface projection of the finite fault model; (b) histogram of separation distance within 50 km. 

(a) 



For the analysis that follows, we consider each horizontal component as a randomly-oriented 

record to increase the number of samples. Based on this consideration, we show in Figure 1(b) 

a histogram for the separation distances between station pairs that are less than or equal to 50 

km. A maximum of 50 km is considered in previous studies [4, 7, 8] as the cut-off distance 

because the spatial correlations for ground motion parameters (PGA, SA and IA) beyond this 

value is negligible. Generally, there are more than 1000 pairs of stations within a 3 km bin for 

separation distances greater than about 5 km. Even at very close distances (less than about 5 

km), each bin contains more than 300 data pairs. 

2.2.2 Prediction Models for Simulation Parameters 

In Table 1, we assign probabilistic distributions for each of the six simulation-model parameters 

based on parameter values from the ground motion records from the 1999 Chi-Chi earthquake. 

The parameters are estimated using the method of maximum likelihood. In general, the 

parameters values are in similar ranges to those reported in [13] that are based on 206 horizontal 

ground motion components recorded in 19 earthquakes from the NGA database. Since we are 

working with a large number of ground motion records from a single event, the uncertainties 

associated with the parameters reported in Table 1 are smaller for IA, 𝜔mid, 𝜔′ and 𝜁𝑓 compared 

to [13]. However, the standard deviations for duration parameters are larger, which is because 

the largest source-to-site distance is about 200 km, while Rezaeian and Der Kiureghian [13] 

used 100 km. Given this choice, the larger variability observed for the duration parameters is 

expected. 

Table 1: Probabilistic distributions and bounds for model parameters. 

Parameter Mean Standard Deviation Fitted Distribution Bounds 

IA (s.g) 0.058 0.136 Lognormal (0, ∞) 

D5-95 (s) 33.5 13.62 Beta [5, 140] 

tmid (s) 25.7 8.29 Beta [8, 54] 

𝜔mid/2𝜋 (Hz) 2.58 1.227 Gamma (0, ∞) 

𝜔′/2𝜋 (Hz) -0.046 0.0375 
Two-sided Generalized 

Extreme Value 
[-0.3, 0.2] 

𝜁𝑓 0.13 0.118 Beta [0.01, 1] 

We then develop empirical prediction equations for the model parameters vi (i = 1, 2, … 6) in 

standard normal space using the functional form below: 

 𝑣𝑖 = 𝑐0 + 𝑐1𝑙𝑛𝑅 + 𝑐2𝑅 + 𝑐3𝑙𝑛 (
𝑉𝑠30

𝑉𝑟𝑒𝑓
) + 𝜀⁡⁡⁡𝑖 = 1,2,… 6 (2) 

where c0, c2, c2 and c3 are regression coefficients; Vs30 is the average shear wave velocity of the 

top 30 m of soil at the recording site; 𝑅 = √𝑅𝑟𝑢𝑝
2 + ℎ2, in which Rrup is the closest distance 

from the recording site to the fault rupture plane, h is a depth term that builds in near-source 

saturations due to finite-fault effects, and  is the residual. The value of h is determined by 

searching within the range from 1 to 10 km to find the value that minimizes the standard 

deviation of the residuals. We set Vref = 760 m/s. The regression coefficients and the standard 

deviation of the residuals are listed in Table 2 for the transformed model parameters. Plots of 

residuals, which are excluded from this paper to save space, do not show any apparent trend 

with respect to source-to-site distance or site condition.  



The regression analysis reveals some insights into the model parameters. For example, Arias 

intensity decreases with distance and site stiffness (Vs30); the duration parameters (D5-95 and 

tmid) tend to increase with distance, but decrease with site stiffness; the filter damping ratio, 𝜁𝑓, 

decreases with source-to-site distance. These trends are consistent with those reported in [13]. 

We adopted two distance terms (c1 and c2) in the functional form (Eq. 2). However, the second 

term (coefficient c2) is not significant except for 𝜔mid and 𝜔′. The use of two distance terms is 

advantageous for these two parameters because  we are able to model the change of attenuation 

patterns with distance for 𝜔mid and 𝜔′. The values of 𝜔mid increase with distance up to about 

40 km, then decrease; while 𝜔′ is the opposite, decreasing with distance up to about 40 km then 

increase. In general, the standard deviations are similar to those in [13] except for duration 

parameters, which is because the use of larger source-to-site distance, as mentioned above. 

Table 2: Regression coefficients for the prediction models for transformed model parameters 

Parameter h (km) c0 c1 c2 c3  

v1 (IA) 5.9 3.09 -0.837 -0.00439 -0.622 0.580 

v2 (D5-95) 1 -1.54 0.169 0.000383 -1.11 0.846 

v3 (tmid) 1 -2.27 0.359 0.00644 -0.605 0.746 

v4 (𝜔mid/2𝜋) 10 -1.12 0.947 -0.0302 0.865 0.767 

v5 (𝜔′/2𝜋) 1 1.12 -0.643 0.0138 -0.619 0.928 

v6 (𝜁𝑓) 10 2.37 -0.505 -0.00703 -0.121 0.795 

2.2.3 Spatial Correlation Characteristics of Model Parameters 

Based on the developed prediction equations and the associated residuals, we investigate the 

spatial correlation characteristics of model parameters. From a recorded earthquake (Chi-Chi 

in this study), the spatial correlation coefficient for each model parameter can be computed 

analogously with that for other ground motion intensities (e.g., SA), as  

 𝜌𝜖(𝛥) = 1 −
[𝜎𝑑(𝛥)]

2

2(𝜎𝜖)2
, (3) 

where Δ is the separation distance between the j-th and k-th recording stations, [𝜎𝑑(Δ)]
2 is the 

variance of 𝜖𝑗 − 𝜖𝑘, where 𝜖𝑗 is the residual with respect to a ground motion prediction equation 

for the model parameter that is developed previously, and 𝜎𝜖 is the standard deviation of 𝜖𝑗. 

This calculation is carried out within each 3 km bin (Figure 1b).  

Figure 3 shows the calculated spatial correlation coefficients and the fitted exponential model 

ρϵ(Δ) = exp⁡(−𝛼Δ𝛽) for the transformed model parameters. The correlation coefficient for 

Arias intensity shown in Figure 3a is very similar to that of SA at 1.0 s [7]. Although different 

subset of ground motions from the Chi-Chi earthquake and different prediction equations are 

used, this correlation closely matches the result of [3] for separation distance less than 50 km 

by converting their semivariogram to correlation coefficients.  

The spatial correlations of duration parameters v2 (D5-95) and v3 (tmid) are generally higher in 

comparison with Arias intensity and other ground motion parameters. However, they show 

different characteristics. For v2 (D5-95), the spatial correlation is relatively low, even for closely 

spaced sites (about 0.6 for separation distance less than 5 km); yet, the spatial correlation 

decreases slowly with separation distance with value of 0.4 at 50 km for the fitted model. 

Nevertheless, since the correlation coefficient equals unity at zero separation by definition, the 

same exponential functional form is used to fit the spatial correlations of v2. On the other hand, 



the spatial correlations for v3(tmid) is very high (> 0.8) at short separation distance and decays 

faster to about 0.3 at 50 km. 

The spatial correlations for v4 (𝜔mid), v5 (𝜔′) and v6 (𝜁𝑓) are rather low, especially for v4 and 

v6. In general, the correlation coefficient is less than 0.2 for separation distance larger than 10 

km. For v5, the correlation coefficient is less than 0.2 for separation distance larger than about 

20 km. Although one may ignore correlations below 0.2 in practical applications, we apply 

spatial correlations for the full range of separation distance until later analysis supports further 

simplification.  

 

 

Figure 3: Empirical spatial correlations and the fitted model for the transformed model parameters. 

2.2.4 Correlation Coefficients between Model Parameters 

As investigated by Rezaeian and Der Kiureghian [13], the transformed model parameters are 

not independent. We calculate the correlation coefficients between the transformed model 

parameters and list them in Table 3. These correlation coefficients are generally similar to those 

reported in [13], which are based on ground motions from multiple events. For example, v1 (IA) 

is negatively correlated with duration parameters v2 (D5-95) and v3 (tmid), indicating the motions 

with high amplitude tend to have shorter durations, because Arias intensity is more strongly 

related to the amplitude of the motion than to the duration. As expected, v2 (D5-95) and v3(tmid) 

are highly correlated. The negative correlation between v4 (𝜔mid) and v5 (𝜔′) indicates that 

motions with higher predominant frequency tend to have a faster decay of the frequency with 

time. The correlation between v5 (𝜔′) and v6 (𝜁𝑓 ) is negative and relatively significant, 

suggesting a faster decay of the frequency with time tends to imply a broader bandwidth. The 

correlations between some model parameters are very low and can be ignored for practical 

applications. However, the cut off value for the correlation cannot be arbitrarily determined 

without justification, and we use the full correlation matrix in the section to follow. 

 



Table 3: Sample correlation coefficients between transformed model parameters. 

 v1 v2 v3 v4 v5 v6 

v1 1 -0.31 -0.38 -0.11 0.05 -0.02 

v2  1 0.68 -0.21 0.20 -0.04 

v3   1 -0.20 0.05 -0.09 

v4    1 -0.46 0.10 

v5  Symmetric   1 -0.29 

v6      1 

 Simulation Example 

Based on the empirical prediction equations for the simulation parameters and their spatial 

correlation characteristics, we simulate ground motions at 5 hypothetical sites for Chi-Chi 

earthquake. These sites are assumed to be located at uniform site condition with Vs30 = 760 m/s 

and rupture distances of 50 km, 52 km, 60 km, 65 km and 70 km. The schematic layout of the 

sites is shown in Figure 4a. For simplicity, the separation distance between a pair of sites is 

assumed to be the difference between their rupture distances. This is true if the closest point on 

the fault to the stations is on the west fault edge with zero depth. The simulations with and 

without spatial correlations of the model parameters are repeated for 100 times each case. 

Figure 4(b) plots the simulated ground motions examples, showing that the simulated ground 

motions are similar to each other if the spatial correlations between model parameters are 

considered (left column). On the other hand, visual inspection of the accelerograms in the right 

column of Figure 4(b) shows that the characteristics of the simulated ground motions can be 

very different from site to site. 

 

 

Figure 4: (a) Schematic layout of 5 hypothetical sites; and (b) sample simulations: left column results from 

spatially correlated model parameters, right column simulations ignore spatial correlation of the parameters. 



Now we examine if including the spatial correlations between model parameters will produce 

spatially correlated spectral acceleration (SA) consistent with observations from actual 

recorded ground motions. In Figure 5 we show the calculated spatial correlation coefficients 

from the simulated ground motions with or without considering the spatial correlations between 

model parameters, and compare these with the observed spatial correlations of SAs at 0.3 s and 

3.0 s. The observations are based on the fitted exponential spatial correlation models are 

developed previously using the Chi-Chi ground motions [7]. First, the spatial correlation 

coefficients for SA without considering spatial correlations of model parameters are essentially 

zero, which is expected since only the correlations between the parameters at the same site 

(Table 3) are considered. Second, by using spatially correlated model parameters, the spatial 

correlations of SAs increases. The increased correlations generally decrease with increasing 

separation distance. However, the SAs from these simulations are not as highly correlated as 

that observed in the Chi-Chi earthquake, indicating that ignoring the cross correlation between 

different parameters at different sites (e.g., between IA and D5-95 at different locations) leads to 

insufficient correlations in the simulated ground motions. We will investigate the spatial cross 

correlations of simulation model parameters in the near future. 

  

Figure 5: Comparison of spatial correlation coefficent for the simulated ground motions with or without 

considering spatial correlation between model parameters: (a) for SA at 0.3 s; (b) for SA at 3.0 s. 

 Exploration of Induced Ground Motions Characteristics 

In this section, we explore the characteristics of ground motions from induced earthquakes. We 

select 50 ground motion records with the largest PGA values from a database of ground motions 

from induced earthquakes compiled by Rennolet et al. [12]. These records are from 33 

earthquakes with magnitude ranges from 3.0 to 4.8.  This database contains more than 100,000 

ground motions from Oklahoma and Southern Kansas recorded between November, 2011 and 

March, 2016. The records are processed following the procedures described for the NGA-West2 

ground motion database, along with additional steps to check for record clipping and 

modifications to the signal window to account for high seismicity rates in the region. Using the 

selected records from induced earthquakes, we summarize the probabilistic distributions of the 

simulation model parameters in Table 4.  



Comparison of the results reported in Table 4 with those in Table 1 and [13] reveals some 

characteristics of induced ground motions that are fairly different from tectonic ground motions. 

Specifically, the energy (IA) contained by these motions is small; durations (D5-95 and tmid) are 

shorter; predominate frequency (𝜔mid) is higher; change of frequency with respect to time (𝜔′) 

is faster. However, the bandwidth (𝜁𝑓) is similar. These differences may be dependent on the 

earthquake magnitude since ground motions from large earthquake tends to be stronger and 

have longer duration and richer low frequency content. Moreover, the relative uncertainties of 

the model parameters are generally larger because the results for induced motions are derived 

based on 100 ground motion components. Future studies are deserved to examine the unique 

features from induced ground motions.  

Due to the limited spatial coverage of recording stations from induced earthquakes, the attempt 

to investigate the spatial correlation characteristics of induced ground motions lead to unstable 

results. This lack of records is also true for tectonic earthquakes in the Central and Eastern U.S. 

Given this situation, the empirical spatial correlation models for the stochastic simulation model 

parameters developed in this study may be used.  

Table 4: Probabilistic distributions and bonds for model parameters for ground motions from induced events. 

Parameter Mean Standard Deviation Fitted Distribution Bounds 

IA (s.g) 0.0083 0.013 Lognormal (0, ∞) 

D5-95 (s) 2.74 3.20 Beta [0.19, 21] 

tmid (s) 1.40 0.90 Beta [0.45, 6.5] 

𝜔mid/2𝜋 (Hz) 14.56 4.28 Gamma (0, ∞) 

𝜔′/2𝜋 (Hz) -1.78 2.82 
Two-sided Generalized 

Extreme Value 
[-13, 3] 

𝜁𝑓 0.17 0.18 Beta [0, 0.9] 

 Conclusions 

We present a stochastic ground motion simulation framework that is capable of simulating 

ground motions with realistic spatial correlation characteristics. The simulated ground motion 

records are developed for use as ground motion excitations in regional seismic loss assessment. 

Spatial correlation characteristics of the simulation parameters are computed based on records 

from the well-recorded 1999 Chi-Chi earthquake. The results suggest that the spatial correlation 

of Arias intensity (IA), significant duration (D5-95), time to the middle of the strong ground 

motion phase (tmid) and the rate of change of the filter frequency with time⁡(𝜔′), should be 

considered in the simulation. On the other hand, filter frequency at tmid (𝜔mid) and the damping 

ratio of the filter (𝜁𝑓) for spatially distributed locations with separation distance larger than 10 

km may be considered independent for practical applications. Example simulations illustrate 

the importance of including such correlations. However, ignoring the spatial cross correlations 

of simulation model parameters leads to unsatisfactory spatial correlations between spectral 

accelerations, which is an issue for future investigation. We also examine a limited number of 

ground motions from induced earthquakes whose characteristics differ from that of strong 

tectonic ground motions, as quantified by the parameters in the simulation approach. Future 

work is needed to systematically study induced ground motions and develop empirical models 

that can be incorporated in the proposed framework in order to conduct regional seismic loss 

estimation under induced earthquakes. 
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