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 2 

ABSTRACT 26 

This paper presents the development of ground motion prediction equations (GMPEs) for the 27 

maximum rotated (RotD100) horizontal component of five intensity measures (IMs): Arias 28 

intensity (AI), cumulative absolute velocity (CAV), cumulative absolute velocity above the 5 29 

cm/s2 threshold (CAV5), standardized cumulative absolute velocity (CAVSTD), and peak 30 

incremental ground velocity (Vgi). The equations predict the ground motion intensity at 31 

outcropping rock sites. This scope reflects the critical importance of outcropping rock motion 32 

properties that can be employed as predictors of certain site response quantities or used as input 33 

to site response and soil-structure interaction analyses. We present equations for the shallow 34 

crustal, intraplate, and subduction tectonic environments, and between- and within-event 35 

standard deviations for each. We also provide supplemental logistic models predicting the 36 

probability that CAV5 and CAVSTD exceed zero in a given earthquake scenario. These equations 37 

are valid for magnitudes between 4.0 and 9.0 and source to site distances up to 400 km, 38 

depending on the tectonic environment. 39 

  40 
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BODY OF TEXT 41 

INTRODUCTION 42 

Kramer and Mitchell (2006) and Karimi and Dashti (2017a, 2017b) have shown that liquefaction 43 

hazard and its consequences (e.g., permanent foundation settlement) can be predicted more 44 

reliably through use of evolutionary intensity measures (IMs) rather than peak-transient 45 

measures (e.g., peak ground acceleration (PGA)). These measures are “evolutionary” because 46 

they accumulate over the course of a ground motion recording. They depend not only on the 47 

amplitude of motion, but also on the motion’s duration and frequency content. One example of 48 

an evolutionary measure is cumulative absolute velocity. However, ground motion prediction 49 

equations for evolutionary intensity measures are fewer in number than those for traditional IMs 50 

such as peak spectral accelerations (PSA) and PGA. In addition, existing models for these 51 

evolutionary IMs have been developed using fewer ground motion records, and often apply to 52 

only one tectonic environment, generally shallow crustal active plate margins.  53 

In this study, we propose new ground motion prediction equations for the maximum rotated 54 

(RotD100) horizontal component of Arias intensity (AI), cumulative absolute velocity (CAV), 55 

cumulative absolute velocity above a 5 cm/s2 acceleration threshold (CAV5), standardized 56 

cumulative absolute velocity (CAVSTD), and peak incremental ground velocity (Vgi). These 57 

equations predict these IMs as a function of earthquake (event) moment magnitude (Mw), focal 58 

depth (H), earthquake type and fault mechanism, and site distance to rupture (using closest 59 

distance, denoted R). We provide equations for shallow crustal, intraplate, and subduction 60 

tectonic environments. The resulting probabilistic estimates of these IMs provide inputs in the 61 

next stage of a performance-based framework for structural design or assessment, which would 62 

link these IMs to demand parameters (DPs) that relate to liquefaction-induced building 63 
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settlement or tilt. The primary motivation behind this work is to develop improved ground 64 

motion prediction equations for the evolutionary IMs that have been previously identified as the 65 

most efficient and sufficient predictors of liquefaction potential and consequences for structures. 66 

As a result, site effects (or terms) are not considered in the prediction equations in this study and 67 

we consider data only from rock sites (VS,30 ranging from 600 to 2,100 m/s). For this specific and 68 

important problem, site effects are highly nonlinear and often require performing nonlinear site 69 

response analyses for the specific soil profile of interest. Furthermore, previous research by two 70 

of the authors (Karimi and Dashti 2017a, 2017b) showed that base rock motion properties (input 71 

excitation to the soil-structure system) tend to be good predictors of liquefaction induced 72 

building settlement and damage, in combination with the key properties of soil and structure. For 73 

these reasons, in this study, we focus on prediction equations for evolutionary IMs only on rock 74 

sites. These can be used for the liquefaction problem, or other cases where a soil model is 75 

combined with input (rock) excitation. The RotD100 component has been selected for use in this 76 

study because soil liquefaction and building settlement are expected to be correlated to the 77 

maximum intensity quantity, regardless of orientation.  At sites where forward directivity is 78 

important, RotD100 aligns closely with the fault-normal component (Shahi and Baker 2014). 79 

Furthermore, Cubrinovski et al. (2003) showed that volumetric strains and excess pore pressure 80 

generation due to cyclic shearing are governed by the response in the direction of the maximum 81 

intensity of earthquake shaking. 82 

REVIEW OF EXISTING PREDICTION EQUATIONS AND METHODOLOGIES  83 

Douglas (2016) compiled a detailed summary of ground motion prediction equations (GMPEs) 84 

developed for PGA and PSA between 1964 and 2016. Recently, the NGA-West2 project 85 

(Bozorgnia et al. 2014) produced five empirical GMPEs for shallow crustal events using an 86 
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extensive, rich database of ground motion recordings. To develop the GMPEs, one of the NGA-87 

West2 studies adopted a two-stage regression approach (Boore et al. 2014) while the others used 88 

a one-stage approach (Abrahamson et al. 2013; Campbell and Bozorgnia 2014; Chiou and 89 

Youngs 2014; Idriss 2014). Atkinson and Boore (2003), Abrahamson et al. (2016), and 90 

Morikawa and Fujiwara (2013) used the one-stage approach to develop empirical GMPEs for 91 

PGA and PSA in subduction earthquakes. 92 

In the first stage of the two-stage approach (e.g., that of Boore et al. 2014), the path (distance-93 

related) effects are isolated by subtracting the earthquake-by-earthquake average observation of 94 

PSA from all observations, and the dependence of these effects on distance is determined by 95 

regression. Within-event uncertainty is estimated in this stage. In the second stage, the 96 

dependence of the event effects on magnitude and mechanism is determined by regression and 97 

between-event uncertainty is estimated. In the one-stage approach utilized to develop the other 98 

GMPEs (e.g., Campbell and Bozorgnia 2014), weighted nonlinear regression is performed to 99 

determine all model coefficients at the same step. Joyner and Boore (1993) compared multistage 100 

(two-stage) and one-stage regression methodologies for analyzing strong motion data from 101 

earthquakes. Those authors conclude that both methods produce unbiased models and that the 102 

two-stage approach is marginally more computationally efficient. In all of the listed GMPEs, 103 

mixed-effects regression (which allows the separation of fixed and random effects) was used to 104 

estimate the uncertainty in model predictions. Mixed-effects regression is most often performed 105 

using the algorithm of Abrahamson and Youngs (1992) or the R implementation of Pinheiro et 106 

al. (2013). 107 

When a ground motion database such as NGA-West is unavailable, a hybrid approach combining 108 

real ground motion recordings with stochastic simulations can be adopted. The most prominent 109 
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example of this methodology is the NGA-East project, which led to the development of synthetic 110 

ground motions for intraplate events (Boore 2015). These ground motions were employed in the 111 

development of hybrid GMPEs (Darragh et al. 2015; Pezeshk et al. 2015; Hollenback et al. 112 

2015). 113 

Fewer prediction equations exist for evolutionary intensity measures. However, research in both 114 

structural engineering and geotechnical engineering communities has highlighted the usefulness 115 

of these intensity measures in risk assessment (e.g., Harp and Wilson 1995; Kayen and Mitchell 116 

1997; Benito and Herraiz 1997). A number of authors have developed broadly applicable models 117 

for AI based on shallow crustal records (Travasarou et al. 2003; Foulser-Piggott and Stafford 118 

2012). Campbell and Bozorgnia (2010) published a model for AI and CAV, also considering 119 

shallow crustal records. Du and Wang (2013) developed a model for CAV based on shallow 120 

crustal records from the NGA database. Likewise, Kramer and Mitchell (2006) developed a 121 

model for CAV5, and EPRI (2006) includes a model for CAVSTD based on records from the 122 

Western and Eastern United States. In addition, specialized prediction equations have been 123 

produced for AI in New Zealand (Stafford et al. 2009); AI in Japan (Pousse et al. 2006); AI in 124 

Italy (Sabetta and Pugliese 1996); AI and CAV in Japan (Foulser-Piggott and Goda 2015); and 125 

AI, CAV, and CAV5 in Greece (Danciu and Tselentis 2007). All of these models used a one-126 

stage regression approach. In addition, at least four prediction equations have been produced for 127 

significant duration: Kempton and Stewart (2006), Bommer et al. (2009), Bora et al. (2014); and 128 

Afshari and Stewart (2016). All four listed here used a one-stage regression approach and apply 129 

only in the shallow crustal tectonic environment. 130 

Most of the models for evolutionary intensity measures have included terms for site effects. To 131 

capture these effects, the majority of records used in the development of these models are not 132 
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from rock sites, but rather from soil sites. The models developed in this study use exclusively 133 

records from rock sites to characterize attenuation and uncertainty for these sites only. The scope 134 

of these models reflects the motivation to predict the intensity of the base motion beneath the soil 135 

column. Further, no models for these IMs exist for the intraplate tectonic environment. 136 

GROUND MOTION PREDICTION MODEL DEVELOPMENT 137 

Ground Motion Record Collection 138 

We collected ground motion records from sites with shear wave velocities in the top 30 m (VS,30) 139 

exceeding 600 m/s, to represent rock conditions. This filter was applied to minimize the 140 

influence of softer rocks and soils on the motion properties. All selected records include 141 

metadata for the motions that includes magnitude and rupture distance from the sources 142 

described below. The complete shallow crustal database used in this study includes 2,191 records 143 

collected from the NGA-West database (Ancheta et al. 2012), 563 records collected from the 144 

New Zealand Strong Motion Database (Van Houtte et al. 2017, Kaiser et al. 2017), and 31 145 

additional records from shallow strike-slip events in Alaska collected through COSMOS 146 

(Haddadi et al. 2008). The intraplate database consists of 1,098 records collected from the NGA-147 

East database (Goulet et al. 2014). The subduction database consists of 1,252 records collected 148 

from the KiK/K-Net database. The subduction database contains only records from events that 149 

can be distinguished as subduction (interface) or subduction (in-slab) in the metadata collected 150 

by Foulser-Piggott and Goda (2015) and Dawood et al. (2016). These distinctions were 151 

developed on the basis of the source characteristics of each earthquake, its location, and, in the 152 

case of large events, detailed seismological studies of those individual events. 153 

Additional records from the Internet Site for European Strong-Motion Data (ISESD) (Ambraseys 154 

et al. 2002) were considered for the crustal and intraplate databases, but the metadata for these 155 
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records was not as uniform as that for records from the NGA databases, so we excluded these 156 

records from the analysis. Additional records from subduction events in Chile, Northern 157 

California, and Washington were also considered, but these were all recorded at sites with soil or 158 

unknown conditions and were therefore excluded. 159 

To exclude motions from low magnitude events recorded at sites far from the source, we applied 160 

linear magnitude-dependent distance filters to each database (e.g., R greater than 60 km for Mw 161 

4.0 up to R greater than 200 km for Mw 5.5 for shallow crustal events; R greater than 100 km for 162 

Mw 4.0 up to R greater than 400 km for Mw 5.0 for intraplate events; and R greater than 150 km 163 

for Mw 4.0 up to R greater than 300 km for Mw 6.0 for subduction events). The removed records 164 

are unlikely to be of engineering significance. These filters resulted in 1,033 shallow crustal 165 

records, 141 intraplate records, and 1,237 subduction records being used in the final regression. 166 

Figure 1 shows the final distributions of event magnitude and site distance-to-rupture. Figure 2 167 

reports the distributions of site shear wave velocity (VS,30) for all records in each tectonic 168 

environment. 169 

Intensity Measures Considered 170 

The five intensity measures included in this study are: Arias intensity (AI), cumulative absolute 171 

velocity (CAV), cumulative absolute velocity above a 5 cm/s2 acceleration threshold (CAV5), 172 

standardized cumulative absolute velocity (CAVSTD), and peak incremental ground velocity 173 

(Vgi). Table 1 defines these IMs.  174 

In the equation for CAV5 presented in Table 1, χ is a filter that has a value of 1 if the acceleration 175 

at that time step exceeds 5 cm/s2 or a value of 0 if it does not, i.e., the Heaviside step function χ = 176 

H(a – 5 cm/sec2). In the equation for CAVSTD, each non-overlapping one-second time increment 177 

is considered separately in the summation, N is the total number of such increments of time, and 178 
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PGAi is the peak ground acceleration in the i-th increment. In the equation for Vgi, t1
i and t2

i are 179 

the times marking the beginning and end of the i-th acceleration pulse. The integrals for AI, 180 

CAV, and CAV5 are from time zero to the duration of the record. 181 

Each intensity measure is evolutionary in nature and is influenced by the amplitude, frequency 182 

content, and duration of the ground motion. Figure 3 and Figure 4 show the trends in intensity 183 

(as represented by CAV) with respect to magnitude and site to source distance, respectively, for 184 

all three tectonic environments considered. For brevity, all figures in this study will show CAV, 185 

although the trends in the other IMs are similar. 186 

Among the IMs considered, AI and CAV are the most commonly used and are the subject of a 187 

greater number of previous GMPEs. As shown in Table 1, AI and CAV are defined as the 188 

integral of the record acceleration squared and the integral of the absolute value of the record 189 

acceleration, respectively. Due to this mathematical difference in their definition, AI naturally 190 

exhibits a broader scatter than CAV and is more sensitive to high frequency ground motion 191 

content. This has been reflected in the logarithmic standard deviations of previous ground motion 192 

prediction equations that have considered both intensity measures using identical databases (e.g., 193 

Danciu and Tselentis 2007; Campbell and Bozorgnia 2010; and Foulser-Piggott and Goda 2015). 194 

Previous research has shown CAV5 to be a strong predictor of both liquefaction triggering and 195 

resulting settlements under shallow-founded structures (Kramer and Mitchell 2006; Karimi and 196 

Dashti 2017b). Kramer and Mitchell (2006) demonstrated the predictability of CAV5 by a 197 

GMPE, but CAV5 is inherently more difficult to predict than CAV due to the zero value it takes 198 

on below the acceleration threshold. Here, we use “predictability” to mean that it is possible to 199 

construct a regression model that predicts a given IM with reasonable goodness-of-fit and 200 

acceptable uncertainty as reflected in the standard deviation of residuals. Predictability is an 201 
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important characteristic of GMPEs because uncertainty in these equations is carried into each 202 

subsequent phase of a performance-based procedure or probabilistic hazard analysis.  203 

In order for CAV5 and CAVSTD to take on a nonzero value, the RotD100 value of PGA must 204 

exceed 5 cm/s2 or 0.025g, respectively. This threshold reduces the number of records available to 205 

model these IMs. Additionally, the transformation from CAV to CAV5 or CAVSTD affects each 206 

record in a somewhat arbitrary way, which may contribute to increased scatter in CAV5 and 207 

CAVSTD. In addition to increasing model uncertainty in these two ways, these limitations have 208 

the effect of creating bias towards stronger motions since weaker motions are systematically 209 

excluded. In this study, because the predictions of these regression models for CAV5 and 210 

CAVSTD are necessarily conditioned on the given IM taking on a nonzero value, logistic 211 

regression (Cox 1958) was developed following a similar procedure to Bray and Travasarou 212 

(2007), which applied a probit regression approach to account for zero-valued slope 213 

displacements. 214 

In addition to being more novel and less-researched, the peak incremental ground velocity (Vgi) 215 

is different from the other four intensity measures considered in this paper in that it does not 216 

depend on the total duration of the record, but rather only on the intensity and duration of the 217 

largest acceleration pulse. We defined acceleration pulses as portions of the ground motion 218 

records starting at a zero crossing and including two additional zero crossings, or essentially one 219 

cycle in the acceleration time history. The Vgi of a given record is the largest area under any 220 

single pulse in that record. Vgi has been shown to be useful in applications related to design and 221 

assessment of frictional base isolators (Jampole et al. 2016), where it correlates strongly with the 222 

largest excursion of the isolator. It may also have applications in geotechnical earthquake 223 

engineering.  224 
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Regression Methodology 225 

We considered multistage and one-stage mixed-effects regression methodologies, but each 226 

yielded similar results. We therefore adopted a single-stage mixed effects regression approach 227 

using the methodology of Abrahamson and Youngs (1992), consistent with many of the 228 

aforementioned prediction equations. A reader interested in the details of each step of the 229 

regression is therefore referred to Abrahamson and Youngs (1992).  230 

Equation 1 provides the general form of regression using this methodology.  231 

 𝑙𝑛 𝑌𝑖,𝑗 = 𝑓(𝑀𝑖 , 𝑅𝑖,𝑗, … ) + 𝜂𝑖 + 𝜀𝑖,𝑗 (1) 232 

In Equation 1, the subscript i refers to parameters of the i-th event and the subscript j refers to 233 

parameters of the j-th recording from that event. The terms in the functional form 𝑓(𝑀𝑖, 𝑅𝑖,𝑗, … ) 234 

are treated as fixed effects, while the between-event logarithmic residual for the i-th event, 𝜂𝑖, 235 

and the within-event logarithmic residual for the j-th recording in the i-th event, 𝜀𝑖,𝑗, are treated 236 

as random effects. We assumed the between- and within-event logarithmic residuals to be 237 

normally distributed with zero mean and standard deviations equal to the between- and within-238 

event standard deviations (τ and φ), respectively. The total logarithmic residual, ri,j, is the sum of 239 

𝜂𝑖 and 𝜀𝑖,𝑗. This treatment of mixed-effects regression follows the methodology of many 240 

previous GMPEs (e.g., Boore et al. 2013, Abrahamson et al. 2013, and Campbell and Bozorgnia 241 

2013). 242 

We neglected site effects because all records considered were recorded on rock. Although the 243 

database includes rock outcrops with different VS,30 values, we assumed that there is no statistical 244 

difference between these IMs measured on weathered rock or intact rock. We validated this 245 
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assumption post facto by evaluating the residuals as a function of rock shear wave velocity 246 

(VS,30).  247 

Functional Form Selection 248 

Development of the functional form for this study began by considering the form used by 249 

Travasarou et al. (2003) for AI and, later by Kramer and Mitchell (2006) for CAV5: 250 

 𝑙𝑛 𝑌 = 𝑐1 + 𝑐2(𝑀𝑊 − 6) + 𝑐3 𝑙𝑛(𝑀𝑊 6⁄ ) + 𝑐4 𝑙𝑛(√𝑅2 + ℎ2) + 𝑓1𝐹𝑁 + 𝑓2𝐹𝑅 (2) 251 

In Equation 2, 𝑀𝑊 is the moment magnitude, 𝑅 is the distance to rupture in kilometers, 𝐹𝑁 is a 252 

flag for faulting mechanism that is equal to 1 if the faulting mechanism is normal and 0 253 

otherwise, and 𝐹𝑅 is a flag for faulting mechanism that is equal to 1 if the faulting mechanism is 254 

reverse and 0 otherwise. This form is appealing because it has been previously shown to be 255 

effective in predicting IMs like those considered and because it is well-constrained at close 256 

distances due to the fictitious depth term, h. However, this form was found to be unable to 257 

adequately capture the trends found in the datasets used in this study as judged by the resulting 258 

R2 statistic of the model and the standard deviation of its residuals.  259 

In a second attempt, because the IMs considered are fundamentally tied to the duration of the 260 

ground motion, the form used by Kempton and Stewart (2006) to predict significant duration was 261 

also considered: 262 

 𝑙𝑛 𝑆𝐷 = 𝑙𝑛 [
(

𝛥𝜎

101.5𝑀𝑊+16.05)
−

1
3

4.9∙106𝛽
+ 𝑐2𝑅 + 𝑓2(𝑆)] (3) 263 
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Ultimately, a new form incorporating elements of both of the above forms was adopted. The 264 

final functional form used in this study for the shallow crustal and intraplate tectonic 265 

environments was: 266 

 𝑙𝑛 𝑌̅ = 𝑎0 + 𝑎1𝑀𝑊 + 𝑎2𝑀𝑊
2 + (𝑏1 + 𝑏2𝑀𝑊) 𝑙𝑛 𝑅 + 𝑏3𝑅 + 𝑓1𝐹𝑅 + 𝑓2𝐹𝑁 (4) 267 

We report all model coefficients in Table 2. The predictions made using these coefficients are all 268 

in units of centimeters and seconds. This functional form includes: quadratic scaling of intensity 269 

with magnitude, found in many GMPEs for PGA and PSA (e.g., Boore et al. 2014, Idriss 2014); 270 

magnitude-dependent log-linear scaling with distance, similar to that employed by Campbell and 271 

Bozorgnia (2014) for PGA and PSA, Travasarou et al. (2003) for AI, and Bommer et al. (2009) 272 

for significant duration; linear scaling with distance, as seen in Kempton and Stewart (2006) for 273 

significant duration; and dependence on mechanism type, which is ubiquitous in GMPEs, 274 

especially those developed for the shallow crustal tectonic environment. 275 

For the subduction tectonic environment, the geometric attenuation is more complex. For this 276 

case, we considered the functional forms used by Atkinson and Boore (2003) for PSA and 277 

Foulser-Piggott and Goda (2015) for AI and CAV for subduction earthquakes. The final 278 

functional form adopted for the subduction tectonic environments was: 279 

 𝑙𝑛 𝑌̅ = 𝑎0 + 𝑎1𝑀𝑊 + 𝑎2𝑀𝑊
2 + (𝑏1 + 𝑏2𝑀𝑊) 𝑙𝑛 𝐷 + 𝑏3𝐷 + 𝑏4𝐻 (5) 280 

Two sets of model coefficients were developed to capture the difference in the trends observed in 281 

interface and in-slab events. We also provide coefficients for use when this information is 282 

unknown. Here, 𝑀𝑊 is the moment magnitude, 𝑅 is the distance to rupture in kilometers, and 𝐻 283 

is the focal depth in kilometers. In the functional form for subduction, 𝐷 is a distance that has 284 

been modified with a magnitude-dependent near-source saturation term, Δ, which is given by: 285 
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 𝐷 =  √𝑅2 + 𝛥2 (6) 286 

 𝛥 = 0.00724 × 100.507×𝑚𝑖𝑛(𝑀𝑊,8) (7) 287 

Atkinson and Boore (2003) derived this magnitude-dependent near-source saturation term. As in 288 

that study, we considered other definitions of Δ. Determining Δ by regression, both as a constant 289 

and as a function of magnitude with the same form, did not improve model performance. 290 

Adjusting the maximum considered magnitude between 7.5 and 9.0 had an adverse effect on 291 

model performance in terms of the model R2 statistic and the standard deviation of the model 292 

residuals, and considering different maximum magnitudes for interface and in-slab events had 293 

little impact. Due to the neutral or adverse effect of changing this magnitude threshold, we 294 

recommend simply using 8.0 for both event types, as shown in Equation7. Intraslab earthquakes 295 

generally occur at great depths, and the resulting lack of near-source recordings for intraslab 296 

events makes it difficult to identify near-source saturation in these earthquakes. However, 297 

including this term as opposed to unadjusted distance terms improved model performance for 298 

intraslab events as represented by the model R2 statistic, as well as for interface events, so it was 299 

used for subduction events of all types. Atkinson and Boore (2003) previously used this term for 300 

developing a GMPE using a database that included both interface and intraslab events. 301 

We considered an assortment of other terms used in previous GMPEs for each tectonic 302 

environment, including hinge magnitudes, additional distance measures (such as 𝑅𝐽𝐵 and 𝑅𝑥), 303 

hanging wall terms, fictitious depth terms, a term for depth-to-top of rupture (𝑍𝑇𝑂𝑅), site terms, 304 

and regional adjustments. However, the terms investigated did not appear to improve the model 305 

predictions, as measured in terms of the model R2 statistic, the standard deviation of the model 306 
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residuals, and the statistical significance of these individual terms as reflected in their p-values. 307 

We therefore did not include these terms in the functional form. 308 

Table 2 provides the model coefficients for all intensity measures investigated in this paper and 309 

all tectonic environments. Figure 5 and Figure 6 plot the shape of the models’ attenuation for 310 

CAV for the shallow crustal and subduction tectonic environments, respectively. The proposed 311 

models’ shape is compared with other models in the literature and actual recordings from 312 

previous earthquakes as validation, as discussed later in the paper. No previous models for the 313 

IMs considered in this study exist for the intraplate tectonic environment, but the shape of the 314 

attenuation found in this study is shown in Figure 7. There are too few records available to 315 

develop a model for CAVSTD in the intraplate tectonic environment, so this IM was excluded. 316 

Plots similar to Figures 5 through 7 for other IMs are included in the electronic supplement. 317 

Logistic Regression for CAV5 and CAVSTD 318 

As previously described, predictions of CAV5 and CAVSTD made using the presented model are 319 

necessarily conditioned on these IMs taking on nonzero values. Therefore, the probability of 320 

either IM exceeding a given value can be determined by: 321 

 𝑃(𝑦 > 𝑌) = 𝑃(𝑦 > 𝑌|𝑦 > 0)𝑃(𝑦 > 0) (8) 322 

The term 𝑃(𝑦 > 𝑌|𝑦 > 0) is obtained from the models in Table 2 based on the predicted median 323 

ln 𝑌̅. To quantify 𝑃(𝑦 > 0), we performed logistic regression to determine the probability of 324 

each of these IMs exceeding zero as a function of magnitude, distance, and focal depth. The 325 

functional form of the logistic regression is: 326 

 𝑃(𝑦 > 0) = (
𝑒𝑥𝑝(𝑧)

1+𝑒𝑥𝑝(𝑧)
) (9) 327 
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 𝑧 = 𝛼0 + 𝛼1𝑀𝑊 + 𝛽1 𝑙𝑛 𝑅 + 𝛽2𝑅 + 𝛽3𝐻 (10) 328 

Initially, we used the same functional form used for the regression models in place of Equation 329 

10, but several terms had little effect on the predicted probabilities, and were therefore removed. 330 

The formulation in Equation 9 is typical for estimating probabilities by logistic regression, per its 331 

original presentation (Cox 1958). Equation 9 can be very closely estimated by using the normal 332 

CDF according to Equation 11. Note that we provide Equation 11 on the basis of empirical 333 

approximation. 334 

 𝑃(𝑦 > 0) ≅ 𝛷(𝑧 1.695)⁄  (11) 335 

Table 3 provides the coefficients for this model. Figure 8 illustrates the resulting probabilities for 336 

CAV5. Performing this analysis for interface and intraslab subduction events separately 337 

generated similar results, so we provide a single logistic model developed using the entire 338 

database of subduction motions. For ranges of magnitude and distance that are of engineering 339 

significance, these probabilities approach 1. 340 

Alternatively, any ground motion prediction equation for PGA can be applied to approximate the 341 

probability that either of these IMs exceeds zero. To determine this probability using a GMPE, 342 

the following equation can be applied: 343 

 𝑃(𝑦 > 0) = 1 − 𝛷 (
𝑙𝑛𝑋−𝑙𝑛 𝑌̅

𝜎𝑇
) (12) 344 

In this equation, 𝑌̅ is the median PGA predicted by a given GMPE for a given scenario, 𝜎𝑇 is the 345 

total logarithmic standard deviation provided by a given GMPE, and X is 5 cm/s2 or 0.025g for 346 

CAV5 and CAVSTD, respectively. This is an approximation because it is based on the probability 347 

that the PGA as defined in the GMPE exceeds that threshold. This PGA may be the geometric 348 

mean of the two horizontal components, the PGA of the median rotated ground motion 349 
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(RotD50), or another measure of PGA, depending on the GMPE used. The logistic regression 350 

method developed previously is based on the probability that the RotD100 PGA exceeds the 351 

threshold, which is consistent with the limitations on the data in the regression models above. 352 

MODEL EVALUATION 353 

Residual Analysis  354 

We analyzed the model residuals to identify bias and estimate the uncertainty in the model 355 

predictions. Figure 9, Figure 10, and Figure 11 show the total logarithmic residuals of the model 356 

predictions of CAV for the shallow crustal, intraplate, and subduction tectonic environments, 357 

respectively. The moving averages shown use a 50-point window for shallow crustal 358 

(approximately 5% of the population), a 10-point window for intraplate (14%), and a 50-point 359 

window for subduction (4%). There is no evident bias in the model for any of the predictor 360 

variables shown, including those that were excluded in the final functional forms, such as the 361 

depth-to-top of rupture (𝑍𝑇𝑂𝑅) and the centroidal depth (𝑍𝐶𝑀𝑇). The centroidal depth, as 362 

available in the NGA East database metadata, is defined as the depth to the centroid of the finite 363 

rupture model for a given earthquake. These measures are included in this figure despite being 364 

excluded from the functional form to demonstrate that there is no apparent advantage of 365 

considering these terms. The residuals of each model pass a Lilliefors normality test for all 366 

intensity measures considered. 367 

Figure 12, Figure 13, and Figure 14 show the between- and within-event residuals for the 368 

shallow crustal, intraplate, and subduction tectonic environments, respectively. There is likewise 369 

no evident bias in the model for any of the predictor variables for the decomposed residuals. In 370 

particular, the lack of bias with respect to site shear wave velocity validates the assumption that 371 
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site effects have been excluded by selecting only records from rock sites. The electronic 372 

supplement provides plots similar to Figures 9 through 14 for the other IMs.  373 

Estimated Model Uncertainty 374 

We assumed all model standard deviations to be homoscedastic, with values reported in Table 2. 375 

Figure 15 compares the final model values with the smoothed empirical between- and within-376 

event standard deviations for CAV for each tectonic environment. In general, the between- and 377 

within-event standard deviations do not display any clear heteroscedasticity, supporting the 378 

assumption of homoscedasticity. In the case of the subduction model, the data set is sparser 379 

above magnitude 7.5 than in the range between 5.5 and 7.5 (Figure 3), likely accounting for the 380 

sharp decrease in the between-event standard deviations observed above a magnitude of 7.5. 381 

Rather than fitting a model where this between-event standard deviation drops above magnitude 382 

7.5, we selected the model value for this case to avoid underestimating the uncertainty. The 383 

uncertainty for the subduction model was determined using the entire set of subduction motions 384 

and is the same for intraslab and interface events. Estimating this uncertainty separately for each 385 

type of subduction event resulted in similar results for both. 386 

Comparison with Existing Models  387 

Table 4 compares the models developed in this study and a variety of existing models in terms of 388 

applicability, size of database, and total logarithmic standard deviation for shallow crustal and 389 

subduction events. No model for any of the IMs considered is available for intraplate events. 390 

In reporting this comparison, when the number of rock records used in a study or its range of 391 

applicability was not explicitly reported, we estimated these numbers based on figures in the 392 

paper. For the Foulser-Piggott and Goda (2015), we could not ascertain the number of rock 393 
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records included because the subduction records and shallow crustal records are shown in the 394 

same figure. Kramer and Mitchell (2006) targeted a site shear wave velocity of 760 m/s rather 395 

than including records from rock sites of varying quality. Danciu and Tselentis (2007) used only 396 

records from Greece; Stafford et al. (2009) predicted AI specifically for New Zealand. 397 

In all cases, our database includes more rock records than previous studies. The range of 398 

applicability of the model is comparable or wider for moment magnitude for all IMs in both of 399 

the tectonic environments included in the comparison, and generally comparable or larger for 400 

distance to rupture, with the exception of the wider ranges of Travasarou et al. (2003) and 401 

Stafford et al. (2009) for AI in the shallow crustal environment. The total logarithmic standard 402 

deviations for this model in the shallow crustal tectonic environment fall in the range observed in 403 

other models for AI, but are slightly larger for CAV and CAV5 in that environment. The total 404 

logarithmic standard deviations for this model in the subduction environment are smaller than 405 

those reported for other models. 406 

It is noteworthy that the between-event standard deviations in this study are larger than in other 407 

studies for the same IMs. The values derived here for CAV are approximately 0.40 for shallow 408 

crustal events in this study, whereas those of Campbell and Bozorgnia (2010) are approximately 409 

0.2. They are also large when compared internally with the within-event standard deviations 410 

(approximately 0.33 for shallow crustal events). Commonly, within-event standard-deviations 411 

are larger than the between-event (Shahi and Baker 2014).  412 

Why might our between-event residual standard deviation of 0.40 be larger than that of prior 413 

authors? Perhaps our exclusive use of rock records produces greater correlation of wave 414 

velocities at different points along the path of wave propagation. With more-uniform wave 415 

velocity, waves will tend to retain coherence for more wavelengths. Because the path is generally 416 
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through rock, with generally higher wave velocity and larger wavelength, the more-coherent 417 

waves will also tend to reach the surface in fewer wavelengths, increasing the effect of 418 

coherence. We think one can characterize that coherence as positive correlation in wave velocity 419 

and amplitude at different points along the path and between different paths from the rupture 420 

surface to the ground surface.   421 

We do not believe that these two effects – fewer wavelengths to travel the same distance and 422 

greater coherence in the same number of wavelengths – would reduce variability in ground 423 

motion at the surface, but instead suspect would increase variance. Why? There remains inherent 424 

uncertainty in the amplitude of seismic waves leaving a rupture of a given magnitude. Motion at 425 

the ground surface where they arrive represents a sum of random variables: the uncertain values 426 

of wave amplitude from waves traveling along different paths from the rupture surface and 427 

arriving at the same place at the same time. In general, the sum of correlated random variables 428 

has variance that is larger than the sum of their individual variances, larger by an amount that 429 

increases with their covariances. So by limiting records to rock sites only, perhaps one could 430 

rather expect greater variance in the ground motion at the surface than one would observe with 431 

mixed sites. We offer the foregoing merely as a plausible hypothesis, one requiring further study 432 

to test how well it reflects reality. 433 

We compared the models developed in this study to those of Campbell and Bozorgnia (2010) for 434 

CAV in shallow crustal events and Foulser-Piggott and Goda (2015) for CAV in subduction 435 

events in Figure 5 and Figure 6, respectively. We chose to compare our model for shallow crustal 436 

events to that of Campbell and Bozorgnia (2010) rather than that of Du and Wang (2013) 437 

because the latter acknowledges bias for VS,30 values in the range of most interest for our model. 438 

These figures show the medians plus and minus one standard deviation for the models being 439 
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compared, as well as the rock records in the database from the selected earthquakes. In both 440 

cases, the model developed in this study provides a better fit through the rock records from the 441 

given events. Additionally, the model developed in this study for the subduction tectonic 442 

environment appears to be better constrained at near distances due to the inclusion of the near-443 

source saturation term. 444 

CONCLUDING REMARKS 445 

We developed ground motion prediction equations for the RotD100 horizontal component of 446 

Arias intensity (AI), cumulative absolute velocity (CAV), cumulative absolute velocity above a 5 447 

cm/s2 threshold (CAV5), standardized cumulative velocity (CAVSTD), and peak incremental 448 

ground velocity (Vgi). The models are applicable for shallow crustal events of moment 449 

magnitudes between 4 and 8 at distances up to 200 km, for intraplate events of magnitudes 450 

between 4 and 6 at distances up to 400 km, and for subduction events of magnitudes between 4 451 

and 9 at distances up to 300 km and focal depths up to 180 km. We provide supplemental logistic 452 

models to calculate the probability that CAV5 and CAVSTD exceed zero in a given earthquake 453 

scenario for all three tectonic environments. 454 

The models can be used to predict the motion at outcropping rock sites and are intended for use 455 

as input to site response and soil-structure interaction analyses and for applications where the 456 

base rock motion is better suited for use as the predictor of certain demand parameters, such as 457 

liquefaction-induced settlement. We have shown the models to be unbiased on their predictor 458 

variables as well as additional source and site characteristics that were excluded from the 459 

functional form. In particular, site shear wave velocity is not included in the functional form of 460 

this study. 461 
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For the specific case of predicting ground motion intensity on outcropping rock sites, the models 462 

in this study are based on more robust databases than used in previous models. The quality of the 463 

fit of these models to records from rock sites has also been shown to improve on that of other 464 

models which include site effects. In the case of the model for the subduction tectonic 465 

environment, the functional form used in this study is better constrained at low distances than 466 

previous models. Previous models did not include the intraplate tectonic environment. For these 467 

reasons, the models presented here are better suited for use in cases that require prediction of 468 

motion on outcropping rock and are more broadly applicable in terms of tectonic environment.  469 



 23 

DATA AND RESOURCES 470 

The following databases were used to gather data for this study and can be accessed at the 471 

following URLs: the NGA-West Database (http://ngawest2.berkeley.edu/); the NGA-East 472 

Database (http://ngawest2.berkeley.edu/); the Kiban-Kyoshin network 473 

(http://www.kyoshin.bosai.go.jp/); the New Zealand Strong Motion Database 474 

(http://info.geonet.org.nz/display/appdata/The+New+Zealand+Strong-Motion+Database); the 475 

Internet Site for the European Strong-Motion Database (http://www.isesd.hi.is/);  and the Center 476 

for Engineering Strong Motion Data database 477 

(http://strongmotioncenter.org/vdc/scripts/search.plx). Each of these databases was last accessed 478 

on 18 December, 2016. The electronic supplement provides lists of the records used in this study. 479 

Additionally, the authors referred to a compilation of ground motion prediction equations 480 

provided by Douglas online (Douglas, J. (2016). Ground-motion prediction equations 1964-2016, 481 

http://www.gmpe.org.uk). This website was also last accessed 18 December, 2016. 482 

  483 

http://ngawest2.berkeley.edu/
http://ngawest2.berkeley.edu/
http://www.kyoshin.bosai.go.jp/
http://info.geonet.org.nz/display/appdata/The+New+Zealand+Strong-Motion+Database
http://www.isesd.hi.is/
http://strongmotioncenter.org/vdc/scripts/search.plx
http://www.gmpe.org.uk/
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Table 1: Definitions of the considered intensity measures 

IM Definition Reference 

AI 𝐴𝐼 =
𝜋

2𝑔
∫ 𝑎(𝑡)2𝑑𝑡
𝑡𝑑

0

 Arias (1970) 

CAV 𝐶𝐴𝑉 = ∫ |𝑎(𝑡)|𝑑𝑡
𝑡𝑑

0

 EPRI (1988) 

CAV5 𝐶𝐴𝑉5 = ∫ 〈𝜒〉|𝑎(𝑡)|𝑑𝑡
𝑡𝑑

0

 Kramer and Mitchell (2006) 

CAVSTD 𝐶𝐴𝑉𝑆𝑇𝐷 =∑(𝐻(𝑃𝐺𝐴𝑖 − 0.025)∫ |𝑎(𝑡)|𝑑𝑡
𝑖

𝑖−1

)

𝑁

𝑖=1

 EPRI (2006) 

Vgi 𝑉𝑔𝑖 = max(∫ |𝑎(𝑡)|𝑑𝑡
𝑡2
𝑖

𝑡1
𝑖

) 
- 

 



Table 2: Regression coefficients for all intensity measures and tectonic environments 

 IM a0 a1 a2 b1 b2 b3 b4 f1 f2 τ φ σT 

S
h

al
lo

w
 C

ru
st

al
 AI -18.784 7.758 -0.576 -4.013 0.435 -0.0213 - 0.005 -0.580 0.786 0.747 1.084 

CAV -5.800 3.593 -0.231 -1.415 0.138 -0.0070 - -0.155 -0.343 0.398 0.331 0.518 

CAV5 -9.397 5.356 -0.395 -3.372 0.381 -0.0110 - -0.197 -0.231 0.490 0.530 0.722 

CAVSTD -10.836 5.165 -0.335 -1.563 0.087 -0.0019 - -0.129 -0.273 0.529 0.392 0.658 

Vgi -8.283 4.480 -0.353 -2.724 0.294 -0.0064 - 0.071 -0.390 0.545 0.452 0.708 

In
tr

ap
la

te
 AI -33.761 11.016 -0.717 -0.421 -0.125 -0.0093 - 0 0 0.534 0.325 0.625 

CAV -13.063 5.078 -0.273 0.439 -0.145 -0.0047 - 0 0 0.262 0.411 0.487 

CAV5 -28.527 8.034 -0.157 2.913 -0.825 -0.0089 - 0 0 0.463 0.553 0.721 

Vgi -3.029 0.931 0.040 -0.828 0.048 -0.0034 - 0 0 0.340 0.483 0.591 

S
u

b
d

u
ct

io
n
 

(I
n

te
rf

ac
e)

 

AI -15.390 3.704 0.201 0.692 -0.774 0.0107 0 - - 0.582 0.675 0.891 

CAV -3.674 1.740 0.098 0.381 -0.334 0.0047 0 - - 0.319 0.298 0.437 

CAV5 -5.796 1.876 0.311 0.484 -0.699 0.0067 0 - - 0.752 0.567 0.942 

CAVSTD 3.684 -0.575 0.335 0.565 -0.503 0.0071 0 - - 0.406 0.222 0.463 

Vgi -8.735 2.454 0.052 0.231 -0.354 0.0060 0 - - 0.343 0.425 0.546 

S
u

b
d

u
ct

io
n
 

(I
n

tr
as

la
b

) 

AI -15.390 3.704 0.201 0 -0.615 0 0.0180 - - 0.582 0.675 0.891 

CAV -3.674 1.740 0.098 0 -0.250 0 0.0066 - - 0.319 0.298 0.437 

CAV5 -5.796 1.876 0.311 0 -0.572 0 0.0161 - - 0.752 0.567 0.942 

CAVSTD 3.684 -0.575 0.335 0 -0.357 0 0.0089 - - 0.406 0.222 0.463 

Vgi -8.735 2.454 0.052 0 -0.289 0 0.0095 - - 0.343 0.425 0.546 

S
u

b
d

u
ct

io
n
 

(U
n

k
n
o

w
n

) 

AI -15.969 4.203 0.092 -0.383 -0.538 0.0051 0.0195 - - 0.659 0.683 0.949 

CAV -4.865 2.108 0.036 -0.009 -0.220 0.0014 0.0074 - - 0.312 0.302 0.434 

CAV5 -0.902 2.471 0.131 -2.611 -0.289 0.0087 0.0268 - - 0.876 0.869 1.234 

CAVSTD -9.658 0.705 0.314 3.364 -0.702 -0.0035 0.0191 - - 0.423 0.247 0.490 

Vgi 1.126 1.343 -0.062 -2.737 0.182 0.0013 0.0110 - - 0.384 0.421 0.570 

 



Table 3: Logistic regression coefficients for CAV5 and CAVSTD for all tectonic environments 

 IM 
𝜶𝟎 𝜶𝟏 𝜷𝟏 𝜷𝟐 𝜷𝟑 

Shallow 

Crustal 

CAV5 -7.232 3.364 -1.775 -0.029 0 

CAVSTD -5.780 3.194 -3.143 -0.011 0 

Intraplate CAV5 -13.484 3.663 -0.223 -0.025 0 

Subduction 

CAV5 0.4919 3.0830 -4.0998 -0.0044 0.0278 

CAVSTD 2.3897 3.3157 -5.9813 0.0060 0.0401 

 



Table 4: Comparison of models for the considered IMs 

 

IM Model Ranges of Applicability 

Number of 

Rock 

Records 

Total 

Logarithmic 

Standard 

Deviation (𝝈𝑻) 

S
h

al
lo

w
 C

ru
st

al
 

AI 

This study 4 ≤ MW ≤ 8 0 ≤ R ≤ 200 1,033 0.959 

Campbell and Bozorgnia 2010 5 ≤ MW ≤ 7.5 - 8.5 0 ≤ R ≤ 100-200 150-200 0.831 

Travasarou et al. 2003 4.7 ≤ MW ≤ 7.6 0 ≤ R ≤ 400 183 0.870 

Foulser-Piggott and Stafford 2011 4 ≤ MW ≤ 8 0 ≤ R ≤ 100 150-200 1.127 

Danciu and Tselentis 2007 4.5 ≤ MW ≤ 7.0 0 ≤ R ≤ 150 75 0.524 

Stafford et al. 2009 5.1 ≤ MW ≤ 7.5 0 ≤ R ≤ 300 Unreported 1.145 

CAV 

This study 4 ≤ MW ≤ 8 0 ≤ R ≤ 200 1,033 0.521 

Campbell and Bozorgnia 2010 5 ≤ MW ≤ 7.5 - 8.5 0 ≤ R ≤ 100-200 150-200 0.420 

Du and Wang 2013 4.0 ≤ MW ≤ 8.0 0 ≤ R ≤ 150 197 0.416 

Danciu and Tselentis 2007 4.5 ≤ MW ≤ 7.0 0 ≤ R ≤ 150 75 0.272 

CAV5 

This study 4 ≤ MW ≤ 8 0 ≤ R ≤ 200 669 0.766 

Kramer and Mitchell 2006 4.7 ≤ MW ≤ 7.4 0 ≤ R ≤ 100 282 0.707 

Danciu and Tselentis 2007 4.5 ≤ MW ≤ 7.0 0 ≤ R ≤ 150 75 0.595 

CAVSTD 
This study 4 ≤ MW ≤ 8 0 ≤ R ≤ 200 383 0.658 

EPRI 2006 4 ≤ MW ≤ 8 0 ≤ R ≤ 200 200-250 0.460 

S
u

b
d

u
ct

io
n
 

AI 
This study 4 ≤ MW ≤ 9 0 ≤ R ≤ 300 1,237 0.891 

Foulser-Piggott and Goda 2015 5 ≤ MW ≤ 9 0 ≤ R ≤ 300 Unreported 1.373 

CAV 
This study 4 ≤ MW ≤ 9 0 ≤ R ≤ 300 1,237 0.437 

Foulser-Piggott and Goda 2015 5 ≤ MW ≤ 9 0 ≤ R ≤ 300 Unreported 0.642 

 



 

Figure 1: Distribution of magnitude and distance in the dataset for the (a) shallow crustal, (b) intraplate, and (c) subduction 

tectonic environments 



 

Figure 2: Distribution of site shear wave velocity for the (a) shallow crustal, (b) intraplate, and (c) subduction tectonic 

environments 



 

Figure 3: Cumulative absolute velocity versus moment magnitude for the (a) shallow crustal, (b) intraplate, and (c) subduction 

tectonic environments 



 

Figure 4: Cumulative absolute velocity versus distance to rupture for the (a) shallow crustal, (b) intraplate, and (c) subduction 

tectonic environments 



 

Figure 5: Comparison of CAV attenuation in shallow crustal events with Campbell and Bozorgnia (2010) for selected 

earthquakes (a: Northridge, MW 6.69; b: Loma Prieta, MW 6.93; and c: Chi Chi, MW 7.62) 



 

Figure 6: Comparison of CAV attenuation in subduction events with Foulser-Piggott and Goda (2015) for selected earthquakes 

(a: Tohoku – 11 March 2011, interface, MW 9.0; b: 12 June 2006, intraslab, 146km depth, MW 6.2; 4 November 2002, interface, 

MW 5.7) 



 

Figure 7: CAV attenuation in intraplate events for selected earthquakes (a: Val de Bois, MW 5.10; Au Sable Forks, MW 4.99; 

Virginia, MW 5.74) 



 

Figure 8: Probabilities of nonzero CAV5 for various event magnitudes in the (a) shallow crustal, (b) intraplate, and (c) 

subduction tectonic environments 

 



 

Figure 9: Total residuals for CAV plotted against predictor variables for shallow crustal events 



 

Figure 10: Total residuals for CAV plotted against predictor variables for intraplate events 



 

Figure 11: Total residuals for CAV plotted against predictor variables for subduction events 



 

Figure 12: Between- and within-event residuals for CAV plotted against predictor variables for shallow crustal events 



 

Figure 13: Between- and within-event residuals for CAV plotted against predictor variables for intraplate events 



 

Figure 14: Between- and within-event residuals for CAV plotted against predictor variables for subduction events 



 

Figure 15: Smoothed and model between- and within-event standard deviations for CAV; the ranges of magnitude and distance 

for which the models are not applicable are shaded 

 


