
1 INTRODUCTION 

Liquefaction has caused extensive damage to shallow-founded buildings and other infrastructure 
in past earthquakes. Even 1% of residual foundation tilt can cause a complete loss (Yasuda and 
Ariyama 2008), and average foundation settlements of 50 mm to 100 mm or more can require 
repairs or demolition (Van Ballegooy et al. 2014). Many procedures estimate the triggering of 
liquefaction in free field conditions (e.g., Youd and Idriss 2001; Boulanger and Idriss 2014) and 
estimate free-field settlements (e.g., Ishihara and Yoshimine 1992). Recently, a few authors have 
developed procedures to estimate the consequences of soil liquefaction for structures (Unutmaz 
and Cetin 2012; Bray and Macedo 2017; Bullock et al. 2018a,b). Most existing procedures for 
analyzing liquefaction hazard provide deterministic estimates of triggering or settlement although 
newer procedures yield probabilistic results (Bray and Macedo 2017; Bullock et al. 2018a,b).  
However, even these procedures cannot be directly applied to region- or portfolio-scale analysis.  
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ABSTRACT: Effective liquefaction mitigation requires an improved understanding of the conse-
quences of liquefaction on structures. The state of practice typically involves estimating building 
settlement using empirical procedures for free-field conditions, which have been shown to be 
unreliable. Other recently-developed approaches tend to separate various mechanisms of defor-
mation, rendering quantification of total model uncertainty difficult or impossible. Further, there 
are no widely-accepted probabilistic models for predicting differential settlement of shallow-
founded structures on potentially liquefiable ground. To address these gaps, first, a series of cen-
trifuge experiments were performed to evaluate the dominant mechanisms of deformation near 
shallow-founded structures. Second, experimental results were used to evaluate the predictive 
capabilities of 3D, fully-coupled, finite element analyses of soil-foundation-structure systems in 
OpenSees. Third, a numerical parametric study (with more than 63,000 3D simulations) was con-
ducted to identify the most optimum Intensity Measures for permanent average and differential 
settlement below the structure as well as the functional form of predictive models. And finally, a 
case history database helped validate and refine the models, accounting for field complexities and 
heterogeneities as well as all mechanisms of deformation not captured numerically nor experi-
mentally. This integrative approach yielded a set of procedures that are the first to consider vari-
ations in soil layering and geometry, key foundation and structure properties (in 3D), contribution 
of all deformation mechanisms, and total inherent model uncertainties. These procedures use de-
tailed information regarding the soil profile as inputs. In order to allow their implementation at 
the regional scale, additional models were developed to tie these procedures to existing methods 
of mapping the liquefaction hazard. These models were based on random field generation of syn-
thetic borehole data, which were validated using real observations of borehole data from New 
Zealand and California. The resulting models allow for probabilistic estimation of liquefaction 
consequences at the individual building- or at the regional portfolio-level scales. 
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In particular, most of the existing procedures employ site-specific geotechnical data such as the 
results of SPT or CPT testing to inform the analysis, design, or retrofit of individual buildings. 
These quantities are too data-intensive to inform regional risk analyses that relate to liquefaction, 
such as regional emergency planning for post-earthquake firefighting (e.g., Scawthorn 2018), the 
design of a resilient grid for a water supply system (e.g., Davis 2017), or the purchase of reinsur-
ance for a large earthquake insurance portfolio (e.g., Roth, 1998). Such risk analyses must depend 
only on regionally mapped geotechnical parameters. In addition, they tend to require probabilistic 
estimates of liquefaction severity. The use of probabilistic procedures is critical for evaluation of 
liquefaction hazard because such procedures characterize the uncertainty around their estimates 
and allow engineers to estimate the probability of exceeding a threshold of average or differential 
settlement.  

In the case of liquefaction consequences for shallow foundations, whether or not a threshold of 
residual tilt (e.g., 1%) is exceeded is often a critical question for decision-making regarding re-
pairs and demolition (e.g., Yasuda and Ariyama 2008; Van Ballegooy et al. 2014). Using maps 
of liquefaction probability index by Holzer et al. (2009) and Hazus, Seligson et al. (2018) estimate 
that liquefaction damage would add $7.5 billion in building and content loss to $47 billion in 
shaking damage alone in a hypothetical but realistic moment-magnitude (Mw) 7.0 earthquake on 
the Hayward fault in the San Francisco Bay Area. Using the Holzer et al. (2009) maps and a new 
pipeline-restoration model, Porter (2018) estimates that considering liquefaction and landslides 
would double the losses from pipeline damage in a San Francisco Bay Area water utility in the 
same hypothetical earthquake. Detailed evaluation of these losses first requires procedures for 
estimating liquefaction damage that are compatible with mapped parameters. 

Bullock et al. (2018a,b) recently produced probabilistic, semi-empirical, predictive models for 
the average and differential settlement of mat-founded structures on a single-building scale. The 
statistical models developed combine numerical, experimental, and case-history data to quantify 
the influence of soil, foundation, and structure parameters on average and differential settlement. 
In this work, we first summarize these site-specific models and then extend them to support char-
acterization of the consequences of liquefaction at the regional scale.  

2 DATA SOURCES AND METHODS 

2.1 Database of numerical parametric results  
The statistical models described in subsequent sections used the results of the numerical paramet-
ric study performed by Karimi et al. (2018) as their base, which were themselves rigorously val-
idated with a series of centrifuge experiments (discussed in the next section). Karimi et al. (2018) 
analyzed 421 three-dimensional, solid-fluid, fully-coupled, nonlinear models of soil-foundation-
structure systems under seismic excitation with 150 ground motion recordings, resulting in ap-
proximately 63,000 simulated observations. These simulations used the PDMY02 soil constitu-
tive model (Elgamal et al. 2002). Figure 1 shows a schematic view of one of the numerical models. 
Table 1 reports the parameters that were varied in Karimi et al. (2018) and their ranges. 

 
Figure 1. Schematic view of a numerical model from the Karimi et al. (2018) parametric study. 



Table 1. Parameters varied in the Karimi et al. (2018) numerical parametric study and their ranges. 
Parameter Range 

Number of susceptible layers 1 to 3 layers 
Thickness of susceptible layers, 𝐻",$ 1 to 20 m 
Thickness of non-susceptible crust, 𝐷",& 1 to 10 m 
Presence of a low permeability cap Present or absent 
Total deposit depth, 𝐻'()  12 to 85 m 
Bedrock shear wave velocity, 𝑉",+,-. 760 to 2,000 m/s 
Foundation bearing pressure, 𝑞 39 to 220 kPa 
Foundation embedment depth, 𝐷0 1 to 5 m 
Foundation width, 𝐵 4.5 to 15 m 
Foundation length-to-width ratio, 𝐿 𝐵⁄  1.0 to 10.0 
Structure height-to-width ratio, 𝐻 𝐵⁄  0.3 to 2.3 
Structure height, ℎ(00 (with constant 𝐻 𝐵⁄ ) 2.6 to 13.7 m 
Structure inertial mass, 𝑀67 5,000 to 2,472,000 kg 
Structure vibration period, 𝑇67 0.25 to 2.0 s 

2.2 Database of centrifuge experimental results  
Results from centrifuge experiments performed by Dashti et al. (2010a,b) were used to calibrate 
and validate the numerical models (Karimi and Dashti 2015,2016) prior to the numerical para-
metric study performed by Karimi et al. (2018). Further, a more extensive database of centrifuge 
test results was collected and used to evaluate and confirm the choice of intensity measures (IMs), 
and also as regression data for the models of residual and peak transient foundation tilt. Table 2 
reports the sources and quantity of the centrifuge test database accessed by the authors. Figure 2 
shows a schematic representation of a centrifuge test specimen.  

Table 2. Centrifuge test results database in the literature. 
Reference Number of tests 

Allmond and Kutter (2012, 2013) 74 
Dashti et al. (2010a,b) 18 
Olarte et al. (2017) 10 
Paramasivam et al. (2018) 3 

 

 
Figure 2. Schematic view of a centrifuge test specimen (Dashti 2009). 

2.3 Database of case history observations 
Lastly, observations of structures that were damaged by soil liquefaction in past earthquakes were 
collected to serve as final validation data for the models. Because certain effects and deformation 
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modes are not accurately captured by the continuum models in the numerical parametric study 
(e.g., they account for neither soil ejecta not nor volumetric strains due to sedimentation) or the 
simplistic models tested in the centrifuge, the case history database is used to apply final adjust-
ments to the models. Table 3 reports the sources and data points collected for the case history 
database, as well as the earthquakes in which they occurred. Figure 3 shows two photos. Their 
actual settlements could be compared with results of the numerical model to produce an empirical 
modification (hence the term “semi-empirical” in the title). 

Table 3. Case history observations in the database. 
Reference Earthquake Number of cases 

Yoshimi and Tokimatsu (1977) Niigata, 1964 15 
Acacio et al. (2001) Luzon, 1990 17 
Bray and Sancio (2009) Kocaeli, 1999 3 
Unutmaz and Cetin (2010) Kocaeli and Düzce, 1999 27 
Bertalot et al. (2013) Chile, 2010 21 
Bray et al. (2014) Christchurch, 2011 4 

 
 

        

Figure 3. Case history observations from the 2011 Christchurch earthquake (Cubrinovski et al. 2011). 

2.4 Model development paradigm 
The statistical models for predicting tilt and settlement of shallow-founded structures developed 
by Bullock et al. (2018a,b) followed a consistent methodology in their development. First, the 
Karimi et al. (2018) numerical database was used to develop a base predictive model, because, 
despite its limitations, this database is more extensive than any other data source found in the 
literature and includes more variation of soil-foundation-structure parameters than the experi-
mental or observational databases. Development of this base model also included identification 
of the optimal ground motion intensity measures (IMs) for foundation settlement and tilt. Then, 
the experimental and/or observational databases were used to adjust the model to account for 
phenomena that are not reflected in the numerical database within the constraints of continuum 
soil mechanics. 

3 PROBABILISTIC MODEL FOR AVERAGE FOUNDATION SETTLEMENT 

Many commonly used methods for predicting settlement due to liquefaction do not explicitly 
consider the presence of the building, whose overburden and dynamic behavior change the lique-
faction and settlement outcomes (e.g., Ishihara and Yoshimine 1992). Others are based on evalu-
ating the factor of safety against liquefaction triggering (e.g., Zhang et al. 2002), while recent 
research has highlighted the possibility of deformations due to softening without triggering (i.e., 
reaching a peak excess pore pressure ratio, ru, of 1.0) occurring beneath the foundation (Karimi 
et al. 2018). New models are needed that address these limitations. This section describes the 



development of the Bullock et al. (2018a) model for total average foundation settlement, repro-
duces its functional form, and reports the coefficients needed for its implementation.  

3.1 Model development 

3.1.1 Base model 
First, a functional form was selected for predicting the average settlement of the foundations sim-
ulated in the numerical parametric study of Karimi et al. (2018). This functional form was deter-
mined based on manual data exploration, and its coefficients were determined using nonlinear 
regression. Cumulative absolute velocity (𝐶𝐴𝑉) at outcropping rock was selected as the IM based 
on efficiency, sufficiency, and predictability considerations. Bullock et al. (2018c) used the nu-
merical and experimental databases to evaluate a wider variety of IMs as measured at multiple 
locations (e.g., at the surface, at the base of the soil column, or at outcropping rock) from both 
nonlinear and equivalent-linear site response analyses, and found that 𝐶𝐴𝑉 at outcropping rock 
location best quantifies the total seismic demand applied to the entire soil-foundation-structure 
system and is the optimum IM for predicting the average settlement. 
 Equation 1 shows the general formulation of the functional form, where 𝐹6$7(, 𝐹0<', and 𝐹67+ 
reflect the influence of soil, foundation, and structure properties in 3D on foundation settlement, 
respectively, and 𝜀",<>? is the logarithmic model error. 

 ln(𝑆)<>? = 𝐹6$7( + 𝐹0<' + 𝐹67+ + 𝜀",<>? (1) 

 Equation 2 shows the functional form for 𝐹6$7(, which includes dependence on the density and 
geometry of the susceptible layers (described by 𝑓",$ and 𝑓H,$, respectively), the presence of a low 
permeability cap above the uppermost susceptible layer (𝐹IJK , a flag that is 1 if such a cap is 
present or 0 otherwise), and hazard at the site (𝐶𝐴𝑉). 𝐻(⋅) is the Heaviside step function. 𝑎N, 
𝑎O,"J&, 𝑎O,KJ&, 𝑏N, and 𝑏O are regression coefficients. Equations 3 and 4 give forms of 𝑓",$ for use 
with site-specific, in-situ testing parameters obtained from SPT and CPT, respectively, and Equa-
tion 5 defines 𝑓H,$. Equations 2 through 5 implicitly reduce the influence of layers that are very 
thin, very deep, or very dense, with no need for an explicit triggering analysis. 

 𝐹6$7( = Q∑ 𝐻S𝐻",$ − 1 + 10WXY𝑓",$𝑓H,$$ Z + [𝑐N + 𝑐O ln(𝐶𝐴𝑉)]𝐹IJK + 𝑠N ln(𝐶𝐴𝑉) (2) 

 𝑓",$("J&) = _
𝑎N, 𝑁O,XN,$ < 12.6

𝑎N + 𝑎O,"J&S𝑁O,XN,$ − 12.6Y, 12.6 ≤ 𝑁O,XN,$ < 17.2
𝑎N + 4.6𝑎O,"J&, 17.2 ≤ 𝑁O,XN,$

 (3) 

 𝑓",$(KJ&) = _
𝑎N, 𝑞-Oh,$ < 112.4

𝑎N + 𝑎O,KJ&S𝑞-Oh,$ − 12.6Y, 112.4 ≤ 𝑞-Oh,$ < 140.2
𝑎N + 27.8𝑎O,KJ&, 140.2 ≤ 𝑞-Oh,$

 (4) 

 𝑓H,$ = 𝑏N𝐻",$ exp m𝑏O nmaxS𝐷",$, 2Y
q − 4rs (5) 

 Equation 6 shows the functional form for 𝐹0<', which includes dependence on the bearing 
pressure and geometry of the foundation (described by 𝑓t and 𝑓u,I, respectively). In these equa-
tions, 𝑑N, 𝑑O, 𝑑q, 𝑒N, 𝑒O, 𝑒q, and 𝑒x are regression coefficients. The influence of bearing pressure 
is reduced if the uppermost susceptible layer is more than one foundation width (1.0𝐵) beneath 
the foundation. The threshold of 1.0𝐵 was selected due to improved (statistical) model perfor-
mance. The model suggests that higher bearing pressures will lead to larger deviatoric settlements; 
wider foundations have less potential for settlement at low intensities, but more potential at high 
intensities; longer foundations will tend to settle less, possibly because shorter (i.e., closer to 
square) foundations are more susceptible to 3D drainage patterns; and that foundations embedded 
at greater depths will settle less (Karimi et al. 2018, Bullock et al. 2018a). 

 𝐹0<' = 𝑓t + 𝑓u,I (6) 
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 𝑓t = {𝑑N + 𝑑O ln[min(𝐶𝐴𝑉, 1000)]} ln(𝑞) × exp}𝑑q minQ0, 𝐵 −maxS𝐷",O, 2YZ~ (7) 

 𝑓u,I = {𝑒N + 𝑒O ln[max(𝐶𝐴𝑉, 1500)]} ln(𝐵)q + 𝑒q(𝐿 𝐵⁄ ) + 𝑒x𝐷0 (8) 

Equation 9 shows the functional form for 𝐹67+, where 𝑓N, 𝑓O, and 𝑓q are regression coefficients. 
This term incorporates the influence of the structure’s inertia on settlement. The effective height 
and inertial mass of the structure increase the potential for tilt, but the trend is not as strong as 
those in 𝐹6$7( or 𝐹0<' (Karimi et al. 2017a,b, 2018; Bullock et al. 2018a). 

 𝐹67+ = {𝑓N + 𝑓O ln[min(𝐶𝐴𝑉, 1000)] ℎ(00q + 𝑓q min[(𝑀67 10X⁄ ), 1] (9) 

3.1.2 Adjusted model 
Because of the limitations inherent in numerical modeling, the base statistical model (which is 

based on a numerically derived database) fails to capture certain deformation modes, especially 
settlement due to ejection of sand around the foundation and settlement due to volumetric defor-
mations such as sedimentation. An adjustment was added to address these deformation modes 
based on case history observations. It was expected to include terms that would correspond to 
increased or decreased volumetric deformations: the thickness of the critical liquefiable layer 
(𝐻",K), its density (as measured by, e.g., 𝑁O,XN as determined by site-specific investigation), and 
the bearing pressure of the foundation (𝑞). Bearing pressure is included for consideration because 
it has been observed to limit the extent of softening (in terms of ru) and hence, volumetric defor-
mations in some cases (Bertalot et al. 2013; Olarte et al. 2018a,b; Paramasivam et al. 2018). Only 
case history observations from mat-founded structures are used in regression to determine the 
coefficients of the adjustment. 

Equation 10 shows the adjusted functional form, where 𝐹6$7(,�'� and 𝐹0<',�'� are the adjusted 
forms of 𝐹6$7( and 𝐹0<', 𝜀",�'� is the adjusted logarithmic model error, and 𝑘N, 𝑘O, 𝑘q, 𝑘x, and 𝑞- 
are regression coefficients. 𝜀",�'� is assumed to be a normal random variable with zero mean and 
a standard deviation of 𝜎",�'�. Note that the term for the influence of the structure (𝐹67+) is not 
adjusted. Equations 11 and 12 give the forms for 𝐹6$7(,�'� and 𝐹0<',�'�, which were selected using 
cross validation (e.g., Arlot and Celisse 2010). 

 ln(𝑆),�6 = 𝐹6,$�,�'� + 𝐹0<',�'� + 𝐹67+ + 𝜀",�'� (10)  

 𝐹6,$�,�'� = 𝐹6,$� + 𝑘N + 𝑘O minS𝐻",K, 12Y
q (11) 

 𝐹0<',�'� = 𝐹0<' + 𝑘q min(𝑞, 𝑞-) + 𝑘x max(𝑞 − 𝑞-, 0) (12) 

 Additionally, the adjusted terms are constrained such that their sum must equal or exceed the 
sum of the unadjusted terms (per Equation 13). This constraint prevents the adjustment becoming 
negative (i.e., predicting a smaller settlement than the base model) because volumetric settlements 
should only increase the numerically simulated settlements.  

 𝐹6$7(,�'� + 𝐹0<',�'� ≥ 𝐹6$7( + 𝐹0<' (13) 

The case history database does not include ground motion records from nearby rock outcrops 
for any specific structure. Therefore, median predictions of outcropping rock 𝐶𝐴𝑉 from Bullock 
et al. (2017) were used in place of the exact values of 𝐶𝐴𝑉 in Equations 10 through 12. The use 
of median predictions in this manner means that the uncertainty around model predictions implic-
itly includes uncertainty around ground motion intensity. Table 4 provides the coefficients needed 
to implement the Bullock et al. (2018a) model for average foundation settlement. 

 
 
 
 

 
 



Table 4. Coefficients needed to implement the Bullock et al. (2018a) model for foundation settlement. 
Coefficient Value Coefficient Value 

𝑎N 1.000 𝑒q -0.0947 
𝑎O,"J& -0.2174 𝑒x -0.2148 
𝑎O,KJ& -0.0360 𝑓N -0.0137 
𝑏N 0.3026 𝑓O 0.0021 
𝑏O -0.0205 𝑓q 0.1703 
𝑐N 1.3558 𝑠N 0.4973 
𝑐O -0.1340 𝑘N -1.5440 
𝑑N -1.3446 𝑘O 0.0250 
𝑑O 0.2303 𝑘q 0.0295 
𝑑q 0.4189 𝑘x -0.0218 
𝑒N -0.8727 𝑞- 61 
𝑒O 0.1137 𝜎",�'� 0.6746 

3.2 Model performance 
Figure 4 shows that the model is unbiased on all input parameters for the case history database 
after adjustment. The adjusted model errors (𝜀",�'�) pass a Lilliefors (1967) test for normality, 
suggesting that use of lognormal model uncertainty is appropriate.  

 

Figure 4. Adjusted logarithmic model errors versus predictor variables in the Bullock et al. (2018a) 
model for average, residual foundation settlement. 

 
Figure 5 shows that the model is also unbiased for the cases with isolated or strip foundations. 

Their errors also pass a statistical test with the same distribution as the mat cases. Although the 
model is not strictly applicable to shallow foundation systems other than mats, Figure 5 suggests 
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that strip and isolated foundations can perhaps be treated as equivalent mat foundations with di-
mensions equal to the building footprint, without any significant bias. 

 

Figure 5. Predicted settlement versus observed settlement for all cases in the case history database used 
in Bullock et al. (2018a). 

4 PROBABILISTIC MODEL FOR FOUNDATION DIFFERENTIAL SETTLEMENT 

Existing procedures for evaluating average foundation settlement are typically extended to predict 
differential settlement or tilt by repeating predictions to separately characterize the opposite sides 
of the foundation. This methodology requires characterization of the soil profile at multiple loca-
tions around the site, and will yield estimates of zero tilt (or differential settlement) if the site is 
relatively homogeneous. However, in reality, differential settlement can occur even in the absence 
of heterogeneous soil conditions in plan because of inertial effects, soil-structure interaction, and 
randomness in ground motion (Karimi et al. 2018; Bullock et al. 2018d; Paramasivam et al. 2018). 
Further, certain effects that increase average settlement may reduce the potential for differential 
settlement. For example, increased foundation bearing pressure may increase average settlement, 
but has a re-centering effect which reduces tilt (Bullock et al. 2018d). This section describes the 
development of the Bullock et al. (2018b) model for differential foundation settlement, repro-
duces its functional form, and reports the coefficients needed for its implementation. Again, this 
model demands site-specific information and is primarily useful at the single-building level. 

4.1 Model development 

4.1.1 Base model 
Development of a probabilistic predictive model for foundation differential settlement (as re-
flected in foundation tilt) also began with fitting a base model to the results in the numerical 
database. The functional form was selected using lasso regression (Tibshirani 1996). Equation 14 
defines the base model, where 𝜀��,<>? are the logarithmic model errors. 

 ln(𝜃+)<>? = 𝐹6$7( + 𝐹0<' + 𝐹67+ + 𝜀��,<>? (14) 

 Equation 15 defines the form of 𝐹6$7( for the model of residual tilt. This model uses two IMs 
on the outcropping rock, the combination of which was identified as optimum: 𝐶𝐴𝑉, which was 
also used in the model for settlement, and the peak incremental ground velocity (𝑉�$). Bullock et 
al. (2018c) confirmed that a vector IM of outcropping rock 𝐶𝐴𝑉 and 𝑉�$ is one of the most effi-
cient and sufficient IMs for predicting the residual tilt of mat-founded structures. Similar to 𝐶𝐴𝑉,  
𝑉�$ can be predicted using the Bullock et al. (2017) GMPEs. 𝐻",O.Nu is the total thickness of the 
liquefaction-susceptible material in the top 1.0𝐵 depth of the profile below the foundation (i.e., 



its zone of influence). Additional terms include dependence on the depth and density of the up-
permost susceptible layer (𝐷",O and 𝑁O,XN,O, respectively). 𝛼N through 𝛼Ox are regression coeffi-
cients. The site-specific term for predicting residual tilt therefore depends primarily on ground 
motion intensity and the shallow properties of the soil profile, reflecting the relatively stronger 
influence of deviatoric (and particularly ratcheting-type) deformations on tilt compared to settle-
ment (Bullock et al. 2018d). 

𝐹6$7( = 𝛼N + Q𝛼X lnS𝑉�$Y + 𝛼� ln(𝐶𝐴𝑉)Z𝐻",O.Nu + 𝛼�𝐷",O + 𝛼�𝐻S17.2 − 𝑁O,XN,OY + 𝛼Oq lnS𝑉�$Y +

𝛼Ox ln(𝐶𝐴𝑉) (15) 

Equation 16 provides the form of 𝐹0<' for the model of foundation residual tilt. This term 
depends on the foundation dimensions and bearing pressure. Foundations that are narrower, 
longer, or embedded less deeply have more tilt potential. These trends follow mechanistic expec-
tations: wider foundations require more differential settlement to achieve the same tilt or distor-
tion; long foundations tend to create shear strains and drainage patterns in the width direction; 
and the soil underneath more deeply embedded foundations is under higher confining stresses 
from the adjacent soil, limiting the extent of shear failure in soil (Bullock et al. 2018b,d). 

 𝐹0<' = 𝛼O ln(𝑞) + 𝛼q ln(𝐵)q + 𝛼x 𝐿 𝐵⁄ + 𝛼� ln(𝐿 𝐵⁄ ) + 𝛼� lnS𝐷0Y (16)  

Equation 17 provides the form of 𝐹67+ for the model for residual tilt. The numerical models 
indicate that structures with higher inertial masses and height-to-width ratios have greater poten-
tial for tilt. 

 𝐹67+ = 𝛼ON min(𝑀67 10X⁄ , 1) + 𝛼OO(𝐻 𝐵⁄ )(𝑀67 10X⁄ ) (17) 

4.1.2 Adjusted model 
The numerical database has a few key limitations with respect to predicting foundation tilt. Firstly, 
it does not fully incorporate inertial effects due to the limitations of modeling soil-structure inter-
action and accumulation of large, localized plastic strains under cyclic compression and tension 
(Ramirez 2018). Secondly, the liquefiable layers in both numerical and centrifuge models are 
horizontally uniform and vertically only incorporate minor variations in properties (in particular 
permeability). Hence, they do not account for the influence of soil heterogeneity and stratigraphic 
variability in elevation and plan on the mechanisms that contribute to foundation tilt. 
 Unlike in Bullock et al. (2018a) for settlement, the Bullock et al. (2018b) model for foundation 
tilt first applied an initial adjustment based on the centrifuge results database. Equation 18 shows 
the form after the first adjustment, where 𝐹67+,-(<7 is the adjusted form of 𝐹67+, and 𝜀��,-(<7 is the 
logarithmic error of the model after the first adjustment. The centrifuge data account for more 
realistic inertial effects on foundation rotation than those observed in the numerical database, but 
do not incorporate major stratigraphic variability in the soil profile. The initial adjustment was 
therefore expected to depend on inertial effects. The form was also selected using the lasso and 
requires adjustment of only 𝐹67+. 

 ln(𝜃+)-(<7 = 𝐹6$7( + 𝐹0<' + 𝐹67+,-(<7 + 𝜀��,-(<7 (18) 

Equation 19 gives the form of the adjusted term for the influence of the structure on residual 
tilt (𝐹67+,-(<7), where 𝛾N and 𝛾O are regression coefficients. The tests in the centrifuge results da-
tabase are performed in sequence, and later tests in the same sequence sometimes begin with the 
buildings in initially damaged states from the earlier motions. To address this limitation, a 
weighting scheme was applied that assigns less weight to tests with more initial damage. Equation 
20 defines the weights (𝑤) as a function of the overturning moment at the beginning of the test 
(𝑀$<$7) and the maximum overturning moment achieved during its course (𝑀?��). A weight of 
1.0 is assigned to tests with no initial damage, and a weight of 0.0 is assigned to tests where the 
initial overturning moment exceeds 10% of the maximum. 
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 𝐹67+,-(<7 = 𝐹67+ + 𝛾N + 𝛾O lnSℎ(00Y (19) 

 𝑤 = max[1 − 10(𝑀$<$7 𝑀?��⁄ ), 0] (20) 
 

 Finally, a second adjustment was applied based on the case history database, to bring in the 
influence of stratigraphic variability in plan and elevation as well as all mechanisms of defor-
mation that contribute to foundation rotation. Equation 21 provides the form of this adjustment, 
where 𝐹6$7(,�'� is the adjusted form of 𝐹6$7(, and 𝜀��,�'� is the logarithmic error of the model after 
final adjustment.  

 ln(𝜃+)�'� = 𝐹6$7(,�'� + 𝐹0<' + 𝐹67+,-(<7 + 𝜀��,�'� (21) 

  Equation 22 gives the form of the adjusted term for the influence of the site on residual tilt 
(𝐹6$7(,�'�). The final adjustment used proxies for vertical heterogeneity developed using the Un-
utmaz and Cetin (2010) case history observations, which include the richest soil profile data in 
the case history database of mat-founded structures. The adjusted site term includes dependence 
on the presence of a low-permeability capping layer (𝐹IJK), the thickness of the non-susceptible 
crust (𝐷",&), and two proxies for vertical heterogeneity. The first proxy, max(𝐻")O.Nu, is the max-
imum continuous thickness of susceptible material in the top 1.0𝐵 depth of the profile from the 
bottom of the foundation. Profiles with larger values of this proxy are less heterogeneous. The 
second proxy, 𝑁h",O.Nu 𝑁",O.Nu⁄ , is the number of non-susceptible layers per susceptible layer in 
the top 1.0𝐵 depth of the profile from the foundation. Profiles with larger values of this proxy are 
more heterogeneous. Calculation of these proxies depends on extensive site-specific investigation 
including SPT or CPT boreholes as well as testing to determine the susceptibility of each layer. 
In this equation, 𝜅N through 𝜅� are regression coefficients. 

 𝐹6$7(,�'� = 𝐹6$7( + 𝜅N + 𝜅O𝐹IJK + 𝜅q𝐷",& + 𝜅x max(𝐻")O.Nu + 𝜅�S𝑁h",O.Nu 𝑁",O.Nu⁄ Y (22) 

Like Bullock et al. (2018a), the median values of the relevant IMs (𝐶𝐴𝑉 and 𝑉�$) as predicted 
by Bullock et al. (2017) were used in place of the true values, and the final reported uncertainty 
therefore includes uncertainty around ground motion intensity. The adjusted logarithmic errors of 
Bullock et al. (2018b) also pass a Lilliefors (1967) test for normality. Table 5 provides the coef-
ficients needed to implement the Bullock et al. (2018b) model for residual tilt. If the Bullock et 
al. (2018a,b) models are implemented together, the correlation between their errors is relevant to 
determining the probabilities of exceedance of paired settlement-tilt thresholds. The correlation 
coefficient between 𝜀",�'� and 𝜀��,�'� is 0.50. 

Table 5. Coefficients needed to implement the Bullock et al. (2018b) model for residual tilt. 
Coefficient Value Coefficient Value 

𝛼N -4.353 𝛼OO -0.020 
𝛼O 0.329 𝛼Oq 0.234 
𝛼q -0.252 𝛼Ox 0.404 
𝛼x -0.036 𝛾N 0.066 
𝛼� -0.430 𝛾O 0.165 
𝛼� -0.121 𝜅N 2.383 
𝛼X 0.003 𝜅O 1.491 
𝛼� 0.026 𝜅q -0.168 
𝛼� -0.082 𝜅x -0.327 
𝛼� 0.314 𝜅� 0.087 
𝛼ON 0.472 𝜎��,�'� 0.548 

4.2 Model performance 
Figure 6 shows that the logarithmic model errors (𝜀��,�'�) for the model of residual tilt are unbi-
ased with respect to its predictor variables. Figure 7 shows the predicted values of residual tilt 
versus the observed values for the mat-founded cases in the database, and demonstrates that the 
model is not systematically biased for small or large tilt values. 



  

Figure 6. Adjusted logarithmic model errors versus predictor variables in the Bullock et al. (2018b) 
model for residual foundation tilt. 

  

Figure 7. Predicted residual tilt versus observed residual tilt for the mat cases in the case history data-
base used in Bullock et al. (2018b). 

5 EXTENSION TO REGIONAL ANALYSIS 

The Bullock et al. (2018a,b) models for average and differential foundation settlement require 
detailed site characterization to implement. Before these models can be implemented for regional- 
or portfolio-scale analysis of damage due to liquefaction, it is necessary to connect them to exist-
ing mapped proxies for liquefaction hazard such as the liquefaction potential index (𝐿𝑃𝐼; Iwasaki 
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1978) and the liquefaction severity number (𝐿𝑆𝑁; Van Ballegooy et al. 2014). This section de-
scribes the development of a model for translating the terms in the models described above con-
sisting of detailed site characterization parameters (e.g., 𝑁O,XN) with terms consisting of  mapped 
proxies, and provides a preliminary version of the regional-scale methodology. 

5.1 Mapped proxies for liquefaction hazard 
Several indices are commonly used as predictors of the liquefaction hazard (e.g., Iwasaki 1978; 
Van Ballegooy et al. 2014; Maurer et al. 2015). These indices are calculated based on the proper-
ties of the soil profile (e.g., geometry, density as characterized by SPT or CPT data, and fines 
content) and the characteristics of the earthquake scenario (e.g., moment magnitude, distance to 
rupture). Researchers have produced maps of liquefaction potential index (𝐿𝑃𝐼) for several re-
gions including Christchurch, New Zealand (Maurer et al. 2014), Urayasu City, Japan (Pokhrel 
et al. 2015), and Adapazari, Turkey (Ansal et al. 2008). 

The liquefaction potential index (𝐿𝑃𝐼) is calculated according to Equation 23 based on the 
factor of safety against liquefaction (𝐹𝑆�$t) in the top 20 m of the soil profile. 𝐿𝑃𝐼 reflects the risk 
of liquefaction triggering in the top portion of the soil profile, with greater weight assigned to soil 
near the ground surface. Calculation of 𝐿𝑃𝐼 is therefore sensitive to the methodology used to 
calculate 𝐹𝑆�$t (e.g., Boulanger and Idriss 2014). 

 𝐿𝑃𝐼 = ∫ maxS1 − 𝐹𝑆�$t, 0Y (10 − 0.5𝑧)𝑑𝑧
qN?
N?  (23) 

The liquefaction severity number (𝐿𝑆𝑁) is calculated according to Equation 24 based on the 
predicted volumetric strains throughout the soil profile. 𝐿𝑆𝑁 therefore depends on the proce-
dure(s) used to calculate 𝜀�, which may or may not also require calculation of 𝐹𝑆�$t (e.g., Zhang 
et al. 2002; Moss et al. 2006; Cetin et al. 2009)  

 𝐿𝑆𝑁 = 1000∫(𝜀� 𝑧⁄ )𝑑𝑧 (24) 

 The procedures used to calculate 𝐹𝑆�$t (e.g., Boulanger and Idriss 2014) require selection of a 
method of estimating the cyclic stress ratio (𝐶𝑆𝑅), which can be calculated based on the surface 
𝑃𝐺𝐴 (e.g., Boulanger and Idriss 2014). Many procedures exist for estimating 𝑃𝐺𝐴 in various 
tectonic environments (e.g., Atkinson and Boore 2003; Campbell and Bozorgnia 2014). 

5.2 Model development 

5.2.1 Synthetic borehole data 
The database used to develop the models consists of synthetic borehole data. Synthetic data, rather 
than data collected in the field (e.g., California Geological Survey 2007), are used because large 
quantities can be generated and a wide range of possible soil profile configurations can be con-
sidered. The synthetic boreholes consist of random field simulations of the SPT blow count 
(𝑁O,XN) and fines content (𝐹𝐶) of the soil profile, which can be used together to calculate the 
equivalent clean sand SPT blow count (𝑁O,XN,-6) and subsequently 𝐹𝑆�$t, 𝜀�, 𝐿𝑃𝐼 and 𝐿𝑆𝑁 for a 
borehole in a given earthquake scenario. Synthetic data are useful in this context in order to sim-
ulate a wide variety of possible scenarios, rather than only those observed in existing databases. 
Bullock et al. (2019) provides more detail regarding the procedure used to generate synthetic 
borehole data. This study uses a database of 600 synthetic boreholes with randomly selected pa-
rameters and randomly uniformly-weighted selected procedures used to calculate the intermediate 
variables. Table 6 lists the procedures used to calculate each variable. 

 

 

 



Table 6. Procedures used to calculate all intermediate variables. 
Variable Procedures 
𝐹𝑆�$t Robertson and Wride (1998), Boulanger and Idriss (2014) 
𝜀� Zhang et al. (2002), Cetin et al. (2009) 

𝑃𝐺𝐴 Atkinson and Boore (2003), Campbell and Bozorgnia (2014), 
Chiou and Youngs (2014), Abrahamson et al. (2016) 

 

5.2.2 Models for extending the Bullock et al. (2018a,b) models 
The goal of these models is to replace the terms for the site with functions of the mapped param-
eters, as shown in Equation 25. Because this process replaces detailed information regarding the 
geometry and characteristics of the soil profile at the site with proxies, additional uncertainty will 
be added to the process in the form of 𝜀-,+ (i.e., the logarithmic errors of the translation of the 
soil term). The form of 𝑓(𝐿𝑃𝐼	or	𝐿𝑆𝑁) will consist of terms that must be known to implement the 
models (e.g., foundation properties such as 𝐵 and earthquake scenario properties such as the mag-
nitude, 𝑀�), and 𝐿𝑃𝐼 or 𝐿𝑆𝑁, but no more detailed information regarding the soil profile. 

 𝐹6,$�,�'� = 𝑓(𝐿𝑃𝐼	or	𝐿𝑆𝑁) + 𝜀)+,� (25) 

The forms for these functions were determined using lasso regression on the database of syn-
thetic borehole data and are given by Equations 26 through 29, where 𝑎N through 𝑎� are regression 
coefficients. Table 6 provides the coefficients and the standard deviations of 𝜀)+,� (𝜎)+,�) for all 
four models. To calculate the total standard deviation for predicting settlement or tilt using the 
mapped proxies, combine 𝜎 from Table 4 or 5 in SRSS with 𝜎)+,� from Table 7. 

 𝐹6,$�,�'�(𝑆) = 𝑎N + 𝑎O𝐿𝑃𝐼q + 𝑎q𝐿𝑃𝐼 + 𝑎x𝑀� + 𝑎� lnS𝑅+>)Y + 𝜀)+,� (26) 

 𝐹6,$�,�'�(𝑆) = 𝑎N + 𝑎O𝐿𝑆𝑁 + 𝑎q𝑀� + 𝑎x lnS𝑅+>)Y + 𝜀)+,� (27) 

 𝐹6,$�,�'�(𝜃+) = 𝑎N + 𝑎O𝐿𝑃𝐼q + 𝑎q𝐿𝑃𝐼 + +𝑎x ln(𝐵) + 𝑎�𝑀� + 𝑎� lnS𝑅+>)Y + 𝜀)+,� (28) 

 𝐹6,$�,�'�(𝜃+) = 𝑎N + 𝑎O𝐿𝑆𝑁q + 𝑎q𝐿𝑆𝑁 + 𝑎x ln(𝐵) + 𝑎�𝑀� + 𝑎� lnS𝑅+>)Y + 𝜀)+,� (29) 

Table 7. Coefficients for the preliminary models for regional analysis. 
Coefficient Equation 26 Equation 27 Equation 28 Equation 29 

𝑎N 1.142 0.9283 -4.5756 -4.6478 
𝑎O 0.00022 0.00373 -0.00019 -0.00004 
𝑎q 0.00181 0.5337 0.02890 0.01476 
𝑎x 0.5203 -0.2998 1.3118 1.2895 
𝑎� -0.3118 - 1.177 1.154 
𝑎� - - -0.757 -0.736 
𝜎)+,� 1.00 1.01 1.16 1.14 

 
 The uncertainty added by using these models is larger than the uncertainty in the original mod-
els. However, the uncertainty reflected in Table 7 includes the following components: uncertainty 
around the estimates of the procedures listed in Table 6; uncertainty arising from the random field 
generation of the boreholes; and uncertainty due to the use of multiple procedures. The uncertainty 
around these models’ predictions may be reduced or better characterized by using specific proce-
dures to develop them (i.e., the same sets of procedures used to develop 𝐿𝑃𝐼 maps). 

6 CONCLUDING REMARKS 

This study summarized the development of the Bullock et al. (2018a,b) models for the average 
and differential settlement of shallow-founded structures on liquefiable ground and provides a 
preliminary methodology for extending them to regional application. The models are based on 
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numerical, experimental, and observational data and yield probabilistic estimates of the total set-
tlement or residual tilt of shallow-founded structures. The models do not depend on predictions 
of liquefaction triggering or the factor of safety against liquefaction. 

The Bullock et al. (2018a,b) models for liquefaction consequences provide key components in 
a framework for performance-based evaluation of shallow-founded structures on liquefiable 
ground. Probabilistic estimates of settlement and residual tilt are needed to estimate losses due to 
liquefaction, which can inform decision-making regarding mitigation and site selection. 
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