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ABSTRACT 5 

This study evaluates a variety of intensity measures (IMs) for predicting the 6 

liquefaction-induced residual settlement and tilt of shallow-founded structures. We 7 

use data from both numerical and physical (centrifuge) models of soil-foundation-8 

structure systems. The relative quality of these IMs is quantified in terms of 9 

efficiency, sufficiency, and predictability. We consider both scalar and vector-10 

valued IMs and evaluate the relative performance of IMs recorded at different 11 

locations (outcropping rock, within rock, far-field, and foundation) from nonlinear 12 

and equivalent-linear simulations. Cumulative absolute velocity (𝐶𝐴𝑉) at 13 

outcropping rock is the optimum IM for predicting foundation settlement, while 14 

either outcropping rock 𝐶𝐴𝑉, peak ground velocity, or peak incremental ground 15 

velocity is optimum for predicting permanent foundation tilt. Vector IMs offer 16 

improvements to efficiency and sufficiency, but may be impractical to predict. 17 

INTRODUCTION 18 

The first step in performance-based structural and geotechnical earthquake engineering after 19 

one identifies the asset under consideration involves the selection of intensity measures (IMs). 20 

Ground motion intensity is a key component in any model for predicting consequences of 21 

earthquakes and, often, uncertainty around ground motion intensity is the largest component 22 

of the total uncertainty in a prediction (e.g., Bray and Travasarou 2007; Bray and Macedo 23 

2017). In this study, we evaluate a wide variety of IMs for predicting earthquake-induced 24 

settlement and tilt of shallow-founded structures on liquefiable ground. Settlement and tilt are 25 

referred to as demand parameters (DPs). Careful IM selection is critical to the quality of 26 

predictive models, and can reduce modeling uncertainty and ensure practicality. The IMs 27 

considered here vary in terms of how the intensity is quantified (i.e., considering evolutionary 28 

parameters, which depend on the amplitude, duration, and frequency content of motion, and 29 
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peak parameters, which depend on the amplitude and sometimes frequency content of motion, 30 

but not duration), the location at which that intensity is measured (i.e., at bedrock below a soil 31 

column, rock outcrop, far-field soil surface, or the foundation), and the type of analysis used 32 

to estimate an IM value (i.e., 1D equivalent-linear analyses, 3D nonlinear, fully-coupled 33 

simulations, etc.). Thus, this study considers a thorough selection of IMs as measured 34 

according to a variety of analyses to identify the optimum IMs for predicting foundation 35 

settlement and tilt due to earthquake-induced liquefaction. 36 

BACKGROUND 37 

Many studies have evaluated the quality of various IMs for predicting structural and 38 

geotechnical DPs (e.g., Shome and Cornell 1999; Luco and Cornell 2007; Padgett et al. 2008). 39 

Luco and Cornell (2007) formally defined the quality of an IM for predicting a DP in terms of 40 

“efficiency” and “sufficiency.” An efficient IM results in relatively small variability around its 41 

predictions of the DP in question and, therefore, smaller uncertainty in probabilistic predictive 42 

models. A sufficient IM results in predictions of DP that are unbiased on all earthquake source, 43 

path, and site parameters that affect the IM. In the context of developing predictive models for 44 

DPs, the availability and efficiency of ground motion models (GMMs) for predicting a given 45 

IM is also important, which is termed “predictability.” Unpredictable IMs are impractical to 46 

use for forward analysis, regardless of their efficiency and sufficiency. 47 

Existing procedures have identified the usefulness of evolutionary IMs for predicting 48 

geotechnical consequences of earthquakes: Kramer and Mitchell (2006) using cumulative 49 

absolute velocity (𝐶𝐴𝑉) above a 5 cm/s2 threshold (𝐶𝐴𝑉5) for liquefaction triggering; Bray and 50 

Macedo (2017) using damage potential 𝐶𝐴𝑉 (𝐶𝐴𝑉𝐷𝑃) for predicting settlement of shallow 51 

foundations on liquefiable ground; and Bullock et al. (2018a) using 𝐶𝐴𝑉 for predicting 52 

settlement of shallow foundations on liquefiable ground. One of these studies also employed 53 

vector IMs containing peak transient and evolutionary IMs (Bray and Macedo 2017). 54 

Evolutionary IMs are somewhat less common in structural engineering, although some studies 55 

have highlighted their applicability (e.g., Kayen and Mitchell 1977). Structural engineers have 56 

also employed vector IMs including peak ground acceleration (𝑃𝐺𝐴), peak ground velocity 57 

(𝑃𝐺𝑉), or spectral acceleration (𝑆𝑎) in combination with a measure of duration (e.g., Bommer 58 

et al. 2004; Raghunandan and Liel 2013; Chandramohan et al. 2016). 59 
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 Most procedures related to liquefaction triggering and consequences (e.g., Youd and 60 

Idriss 2001; Cetin et al. 2009; Unutmaz and Cetin 2012; Boulanger and Idriss 2014) use the 61 

cyclic stress ratio (𝐶𝑆𝑅) as a measure of intensity, which is a function of soil surface peak 62 

ground acceleration (𝑃𝐺𝐴) at a hypothetical far-field location, typically obtained from 1D, 63 

equivalent-linear, total-stress site response analyses. 𝐶𝑆𝑅 is sometimes adjusted to incorporate 64 

the presence of the building (e.g., Cetin et al. 2009; Unutmaz and Cetin 2012). These 65 

procedures also often indirectly consider the influence of duration by including the 66 

earthquake’s moment magnitude (𝑀𝑊). To select a more optimum IM, Karimi and Dashti 67 

(2017) and Bullock et al. (2018a) used a similar approach to Luco and Cornell (2007), 68 

concluding that outcropping rock 𝐶𝐴𝑉 was optimum for predicting permanent average 69 

settlement of mat-founded structures on liquefiable soils, based on 3D, nonlinear, fully-70 

coupled, dynamic numerical simulations. Note that the settlements observed in these numerical 71 

simulations primarily capture deviatoric-type deformations (Karimi et al. 2018; Bullock et al. 72 

2018a). Also note that Bullock et al. (2018a) used the same, extensive numerical database as 73 

this study, but considered only a few IMs, evaluated only settlement and did not fully document 74 

the IM evaluation. In a separate study, Bray and Macedo (2017) used a vector far-field IM 75 

including 𝐶𝐴𝑉𝐷𝑃 and 𝑆𝑎(1.0) to predict the deviatoric component of foundation settlement.  76 

This study evaluates a wider variety of IMs than previous studies using a single set of 77 

quality metrics according to both numerical and centrifuge test results. Although insightful, 78 

prior studies often did not consider a comprehensive variety of IMs or the full range of 79 

methodologies or locations for their estimation. For instance, Karimi and Dashti (2017) did not 80 

consider IMs calculated using equivalent-linear analyses, used a less extensive numerical 81 

database than the present study (e.g., approximately 1,600 compared to more than 63,000 with 82 

additional variations in motion and system properties), did not differentiate between the 83 

outcropping rock and within-rock motion for predicting foundation settlement (because their 84 

simulations employed a rigid bedrock), and did not confirm their conclusions with 85 

experimental results. Additionally, the previous work did not consider whether certain IMs are 86 

better or worse in certain ranges of soil-foundation-structure parameters, which may influence 87 

IM selection in predictive models; did not consider vector IMs (i.e., using multiple IMs in one 88 

predictive model); and did not investigate the possible influence of rotational motion at the 89 

foundation. Therefore, these IM selections may not be optimum in terms of performance or 90 

predictability, and they need to be reevaluated more comprehensively and consistently at 91 
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different locations using different types of analyses common in practice, to evaluate both 92 

residual settlement and tilt of the foundation.  93 

OBJECTIVE AND METHODS 94 

Performance-based earthquake engineering (PBEE) requires probabilistic estimates of both 95 

IMs and DPs. We adopt a double integral version of the PBEE framework equations, i.e.:  96 

 𝜆(𝐷𝑀) = ∬ 𝐺(𝐷𝑀|𝐷𝑃)𝑑𝐺(𝐷𝑃|𝐼𝑀)𝑑𝜆(𝐼𝑀) 1 97 

In this equation, 𝜆(∙) is the mean annual rate of exceedance of the argument, 𝐺(∙) is the 98 

complementary cumulative distribution function of the argument, and DM is a damage 99 

measure. In this study, DMs would be represented by threshold values of the DPs (e.g., 100 

“excessive” settlement or residual tilt defined according to some limiting threshold). GMMs 101 

consisting of a rupture forecast (i.e., the location, geometry, magnitude, and rates of occurrence 102 

of relevant earthquakes; e.g., Field et al. 2015) and one or more ground motion prediction 103 

equations (e.g., Campbell and Bozorgnia 2014) provide the rate of occurrence of IM values 104 

(𝑑𝜆(𝐼𝑀)) in this equation. The rate of occurrence of an IM (λ(IM)) plotted against the IM 105 

values is commonly referred to as the hazard curve. Structural and geotechnical models are 106 

used to probabilistically estimate DPs conditioned on IMs, denoted here as 𝑑𝐺(𝐷𝑃|𝐼𝑀). 107 

In this study, we use both results of numerical analyses (nonlinear and equivalent-108 

linear) and centrifuge experimental results to compare competing IMs for use in estimating 109 

settlement and residual tilt of mat-founded structures on liquefiable ground. We consider these 110 

datasets rather than observations of real buildings experiencing strong ground motion, 111 

settlement, and residual tilt because very few detailed recordings of motion or settlement are 112 

available, and those which are available include only ground motion recorded at the surface of 113 

a nearby far-field site, which may or may not reflect the soil profile and motions near the 114 

structure in question.  115 

QUALITY METRICS 116 

Efficiency, sufficiency, and predictability are common measures of the performance of IMs 117 

(e.g., Luco and Cornell 2007; Eads et al. 2015; Dashti and Karimi 2017). Efficiency is a 118 

measure of dispersion in the errors in prediction of DP based on IM: how accurately can an IM 119 

predict a DP with no other information? Sufficiency is a measure of bias in the errors on an 120 
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earthquake scenario’s source, path, and site parameters (e.g., moment magnitude, 𝑀𝑊, or 121 

distance to rupture, 𝑅𝑟𝑢𝑝): does an IM capture all relevant information in an earthquake record? 122 

Predictability is a measure of the practicality of generating probabilistic estimates of a given 123 

IM using ground motion models (GMMs): can we actually implement a model that uses a given 124 

IM, and what is the uncertainty in predicting the IM itself? 125 

 We formally define efficiency as the standard deviation of the logarithmic residuals 126 

(𝜀𝐷𝑃|𝐼𝑀) of a regression between the IM and DP, according to Equation 2.  127 

 ln(𝐷𝑃) = 𝑎0 + 𝑎1 ln(𝐼𝑀) + 𝜀𝐷𝑃|𝐼𝑀 2 128 

Previous studies considering efficiency and sufficiency (e.g., Luco and Cornell 2007) have 129 

opted to use the typical 𝜎 notation used for other standard deviations. However, to avoid 130 

confusion and to minimize the need for complex subscripts, we denote efficiency as 𝐸𝐷𝑃 =131 

std(𝜀𝐷𝑃|𝐼𝑀). 𝐸𝐷𝑃 is always positive, and smaller values reflect higher efficiency because there 132 

is less uncertainty around the predictions of the DP. 133 

 An IM is “sufficient” if its predictions are functionally independent from all earthquake 134 

parameters. Sufficiency is crucial because the PBEE framework equation (Equation 1) is only 135 

valid for sufficient IMs. Although sufficiency technically pertains to all earthquake scenario 136 

parameters including those pertaining to site effects and secondary effects such as hanging-137 

wall effects, only the primary parameters of magnitude and distance are typically evaluated 138 

(e.g., Luco and Cornell 2007). These parameters are the most influential for the intensity of 139 

ground motion at a given location in a given earthquake (e.g., Abrahamson et al. 2013; Boore 140 

et al. 2014; Campbell and Bozorgnia 2014; Chiou and Youngs 2014). Here, we use the 141 

regressions in Equations 3 and 4 to quantify sufficiency with regard to magnitude and distance 142 

and the unexplained variation (residuals) from Equation 2. 143 

 𝜀𝐷𝑃|𝐼𝑀 = 𝑏0,𝑀 + 𝑏1𝑀𝑊 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 3 144 

 𝜀𝐷𝑃|𝐼𝑀 = 𝑏0,𝑅 + 𝑏2 ln(𝑅𝑟𝑢𝑝) + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 4 145 

We formally define sufficiency with regard to 𝑀𝑊 or 𝑅𝑟𝑢𝑝, denoted 𝑆𝐷𝑃,𝑀 or 𝑆𝐷𝑃,𝑅, 146 

respectively, according to Equations 5 and 6:  147 
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 𝑆𝐷𝑃,𝑀 = |
𝑏1[max(𝑀𝑊)−min(𝑀𝑊)]

max(𝜀𝐷𝑃|𝐼𝑀)−min(𝜀𝐷𝑃|𝐼𝑀)
| 5 148 

 𝑆𝐷𝑃,𝑅 = |
𝑏2[max(ln(𝑅𝑟𝑢𝑝))−min(ln(𝑅𝑟𝑢𝑝))]

max(𝜀𝐷𝑃|𝐼𝑀)−min(𝜀𝐷𝑃|𝐼𝑀)
| 6 149 

The numerators in these equations reflect the total change in estimated 𝜀𝐷𝑃|𝐼𝑀 over the total 150 

range of 𝑀𝑊 or 𝑅𝑟𝑢𝑝 considered, and the denominators are the total ranges of observed values 151 

of 𝜀𝐷𝑃|𝐼𝑀. 𝑆𝐷𝑃,𝑀 and 𝑆𝐷𝑃,𝑅 therefore represent the portion of the total range of 𝜀𝐷𝑃|𝐼𝑀 that is 152 

the result of bias on 𝑀𝑊 or 𝑅𝑟𝑢𝑝, and smaller values are desirable. Using this definition of 153 

sufficiency allows us to directly compare the sufficiency of different IMs and DPs (each 154 

combination of which will have a different range of 𝜀𝐷𝑃|𝐼𝑀, and also to compare the sufficiency 155 

with respect to magnitude and that with respect to distance. We generally consider 5% to be an 156 

upper bound on acceptable sufficiency defined this way, although we primarily consider the 157 

relative sufficiency in this study. The 5% threshold is somewhat arbitrary, but aligns with the 158 

use of 5% as a threshold elsewhere in statistics (e.g., the ubiquitous 5% significance level). 159 

 We quantify predictability as the uncertainty (i.e., the total standard deviation of 160 

residuals, which we denote 𝜎𝑝 in this study) around the predictions of GMMs for a given IM. 161 

However, the availability of GMMs for a wide variety of locations and tectonic environments 162 

and the robustness of databases used to develop the GMMs should also be considered; even if 163 

a very accurate GMM exists for a given IM, it is not considered predictable if that GMM is 164 

limited in applicability. 165 

 Two additional metrics have been used in other IM studies: practicality and proficiency 166 

(e.g., Padgett et al. 2008). Practicality is a measure of the strength of relationship between the 167 

IM and DP, i.e. the value of the coefficient 𝑎1 in Equation 2. Proficiency (𝜁𝐷𝑃) combines the 168 

concepts of efficiency and practicality (𝜁𝐷𝑃 = 𝐸𝐷𝑃 𝑎1⁄ ) into a single metric. Appendix A 169 

provides values for practicality and proficiency. 170 

DEFINITION AND LOCATION OF MOTION 171 

Before selecting specific IMs, we need to be very clear about what we mean by motion or a 172 

ground motion record. Where is this motion occurring and which type of analysis is used to 173 

obtain it? These questions have implications for the efficiency and sufficiency of IMs – is 174 

motion at the surface of a nonlinear or equivalent-linear, liquefiable soil column a better 175 
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predictor of liquefaction consequences than the motion at its base? Motion location is also 176 

related to predictability; do models exist that are applicable for predicting a given IM at a 177 

particular location and what is the uncertainty associated with those models?  178 

 We consider the following five definitions of motion (Figure 1): outcropping rock 179 

motion (OR), within-rock motion (WR), far-field surface motion as estimated using 1D 180 

equivalent-linear site response analyses (FF-EL), far-field surface motion as estimated using 181 

3D nonlinear dynamic analyses (FF-NL), and foundation motion as estimated using 3D 182 

nonlinear dynamic analyses of the soil-structure system (FN-NL). The motion at each location 183 

is the (horizontal) transverse acceleration recorded in the direction of shaking. These five 184 

definitions of motion each convey different information. The outcropping rock motion is the 185 

input motion to the more complex analyses and easiest to estimate for forward prediction with 186 

the lowest degree of uncertainty. IMs at this location are commonly used for selection of 187 

ground motion records in complex hazard analyses (e.g., Kramer and Mitchell 2006; Karimi et 188 

al. 2018). The within-rock motion is that recorded at the base of the soil column and is therefore 189 

influenced by the properties of the outcropping rock motion as well as the bedrock and soil 190 

above. The far-field motion is typically associated with liquefaction triggering analyses and 191 

forms the basis for many procedures (e.g., Cetin et al. 2009; Boulanger and Idriss 2014). We 192 

include the equivalent-linear far-field motion because these analyses are commonly used in 193 

practice to obtain surficial IMs based on the assumption of no liquefaction, and the nonlinear 194 

far-field motion because it is more likely to reflect the characteristics of motion above the 195 

liquefiable material. Equivalent-linear analyses are used, rather than nonlinear total-stress 196 

analyses, because they require less information to implement (and are therefore more practical 197 

and common) and because they are more distinct from the FF-NL motion. FF-NL is provided 198 

for comparison, but is not ideal from the perspective of practicality and simplicity in prediction 199 

of liquefaction consequences. Lastly, the motion at the foundation was expected to most closely 200 

link to certain deformation mechanisms, particularly those involving the generation of shear 201 

stresses and strains near the foundation (Dashti et al. 2010a,b). Therefore, even though 202 

impractical in terms of predictability, the foundation motion was considered among different 203 

locations for comparison of efficiency and sufficiency.  204 
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NUMERICAL MODELING OF SHALLOW-FOUNDED STRUCTURES 205 

An extensive numerical study of shallow-founded structures on liquefiable ground provides 206 

the first dataset for this study (Karimi et al. 2018). That study employed 421 3D, solid-fluid, 207 

fully-coupled, effective stress, finite element simulations of soil-foundation-structure systems 208 

on layered, potentially-liquefiable ground, each analyzed under 150 ground motion records, 209 

producing approximately 63,000 total analyses that quantify ground motion intensity at various 210 

locations, as well as the demands on the foundation and structure. Figure 2 shows a schematic 211 

diagram of the models and provides a summary of the parameters that were varied. Appendix 212 

B provides additional details regarding these variations. These models used the PDMY02 soil 213 

constitutive model (Elgamal et al. 2002) with parameters calibrated according to cyclic shear 214 

and centrifuge tests (Karimi and Dashti 2015, 2016).  215 

Karimi et al. (2018) used the fault-normal or maximum rotated horizontal component 216 

of ground motion as the one-directional input excitation for the models, applied parallel to the 217 

short side of the foundation. Outcropping rock motions were used as inputs to the numerical 218 

models, which were converted to within-rock motions using dashpots defined by the bedrock 219 

properties (Lysmer and Kuhlemeyer 1969). The input excitation was applied to the base nodes 220 

as a force time history derived from the bedrock density, the bedrock shear wave velocity, and 221 

the outcropping rock velocity time history. Equal-degree-of-freedom constraints were applied 222 

to all nodes at the boundaries, such that all boundary nodes at a given depth had the same 223 

motion. The foundation was tied directly to the soil, meaning the foundation was unable to 224 

slide relative to the neighboring soil. 225 

For use of these results in this study, the far-field motion is recorded at a surficial 226 

location away from the foundation and away from the edge of the mesh to avoid boundary 227 

effects. The node selected to record the far-field motion was validated according to one-228 

dimensional (1D, single column) analyses of the same soil profile. The foundation motion is 229 

the average transverse acceleration of the foundation’s corners. We calculate settlement by 230 

taking the average of vertical displacements at each corner of the mat foundation, and we 231 

calculate residual tilt by dividing the differential settlement by foundation width in the direction 232 

of shaking. The applied excitation was 1D (horizontal) in these simulations, such that tilt 233 

always occurred in the direction of the foundation width, B (as opposed to its length, L).  234 
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 This constitutive model and numerical modeling approach provide good predictions of 235 

foundation settlement (particularly for soil profiles with relatively thin liquefiable layers, 236 

where shear-type deformations are dominant), foundation acceleration demand, and pore 237 

pressure generation in the liquefiable material (Karimi and Dashti 2015, 2016).  However, key 238 

limitations remain. In particular, these continuum models cannot capture certain deformation 239 

modes (e.g., sand ejection). In addition, the PDMY02 soil model may not accurately account 240 

for volumetric deformation modes, such as sedimentation, in a liquefied deposit. Further, the 241 

models may not accurately capture the influence of structure’s inertia on residual tilt for a 242 

number of reasons. In particular, certain parameters (e.g., structure height and mass) that are 243 

correlated in the field were artificially separated in the parametric study. The model structures 244 

were idealized as elastic single-degree-of-freedom (SDOF) oscillators, and therefore did not 245 

include the influence of inelastic deformations in the structure or of vibration in multiple 246 

modes. Lastly, the foundation elements were attached to soil in these simulations (i.e., no 247 

interface models), limiting the extent and accumulation of inertial rocking and distortion 248 

around the foundation edges. 249 

We also performed 1D equivalent-linear analyses using DeepSoil 6.1 (Hashash et al. 250 

2016) to estimate the motion in the far-field for each distinct soil profile represented in the 251 

numerical database above. These analyses utilized the damping and shear modulus reduction 252 

curves proposed by Darendeli (2001), and shear wave velocity profiles were formulated 253 

according to Kramer (1996) and Jamiolkowski et al. (1991). The maximum shear strain 254 

observed at any point in a given profile ranged from 0% to 0.3% during different motions, with 255 

a 90th percentile of 0.1%. These strains are mostly below the limit used for equivalent-linear 256 

analyses of approximately 0.3 to 0.5% (Stewart et al. 2014). Appendix C provides more details 257 

on the calculation of various parameters for the equivalent-linear analyses. 258 

CENTRIFUGE TESTING 259 

For further information on centrifuge modeling of soil liquefaction and its consequences on 260 

soil-structure interaction and building performance or centrifuge modeling of soil-structure 261 

interaction in general, please refer to Dashti (2009); Dashti et al. (2010a,b); Mason et al. 262 

(2013); Trombetta et al. (2013); Olarte et al. (2017, 2018); Paramasivam (2018a). Table 1 263 

summarizes the database of centrifuge test results used in this study, and Appendix B provides 264 

additional details. We include only tests with flexible structures (as opposed to rigid blocks) 265 
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on shallow mat foundations. The results from centrifuge tests were critical during the validation 266 

and calibration of numerical models. These tests also provide data for the IM study that avoid 267 

certain limitations of numerical modeling. In particular, the physical models can partly capture 268 

ejection (due to homogeneous soil conditions) and all deformation modes (e.g., volumetric 269 

strains due to sedimentation). Despite the factors that may limit or reduce ejection in the 270 

centrifuge (mainly lack of inhomogeneity and spatial variations in permeability), it has been 271 

observed in several experiments (e.g., Fiegel and Kutter 1994; Paramasivam et al. 2018a,b; 272 

Badanagki et al. 2018). 273 

Of course, centrifuge testing has its own set of limitations. For practical reasons, the 274 

same physical specimens are usually subjected to multiple sequential ground motions in the 275 

centrifuge. The first strong motion results in residual settlement and tilt of the foundation and 276 

densification of different soil layers (altering their geometry and properties). Subsequent tests 277 

on the same specimen therefore do not have the same initial conditions, and their results depend 278 

on the history of tests run during that spin of the centrifuge. In addition, centrifuge testing 279 

typically uses ground motion records that have been scaled and altered in frequency content to 280 

accommodate the shake table’s capabilities. Once altered, ground motions may no longer 281 

realistically correspond to a real magnitude-distance scenario. Therefore, we can only use the 282 

results from centrifuge to evaluate efficiency, but not sufficiency. Lastly, although there is 283 

some variation in soil-foundation-structure system parameters in the available centrifuge data, 284 

there is not enough to consider parametric efficiency, which is subsequently discussed using 285 

the numerical database. 286 

In interpreting centrifuge test results, we consider the outcropping rock and within-rock 287 

motion to be equal to the motion recorded at the base of the soil. For this case, the outcropping 288 

rock and within-rock motion are the same because the base of the container is relatively stiff 289 

(for infinitely stiff media, outcropping rock and within-rock motion are theoretically 290 

equivalent). The surficial far-field motion and the foundation motion for each structure were 291 

recorded using accelerometers in each test. The centrifuge tests also provide the opportunity to 292 

evaluate IMs in terms of a foundation’s rotational acceleration, which may not be captured 293 

accurately in the numerical analyses because of constraints related to the lack of interface 294 

elements (Karimi and Dashti 2016). Rotational acceleration (in rad/s2) is defined as the inverse 295 

sine of the difference in two vertical acceleration records at the edges of the foundation divided 296 

by their separation.  297 
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INTENSITY MEASURES CONSIDERED 298 

The population of IMs considered in this study includes 11 peak transient IMs, 5 evolutionary 299 

IMs, and 4 duration-related IMs. We also consider vector-valued IMs consisting of one of the 300 

peak transient IMs paired with one of the evolutionary or duration-related IMs. These pairs are 301 

determined after examining the performance of the individual IMs. Table 2 summarizes these 302 

IMs and provides equations for their calculation. In these equations, 𝑡𝑑 is the total duration of 303 

a given ground motion record, and 𝑎(𝑡) is its acceleration time history, 𝜒〈𝑎(𝑡)〉 is a filter that 304 

is zero when 𝑎(𝑡) is below 5 cm/s2 and one otherwise, 𝐻(⋅) is the Heaviside step function. 305 

𝐶𝐴𝑉𝐷𝑃 is equal to 𝐶𝐴𝑉𝑆𝑇𝐷 if pseudo-spectral acceleration (𝑆𝑎) exceeds 0.2𝑔 at any period 306 

between 0.1 and 0.5 sec, and pseudo-spectral velocity (𝑆𝑣) exceeds 15.34 cm/s at any period 307 

between 0.5 and 1.0 sec, and zero otherwise.  308 

 We consider 𝑆𝑎 at a handful of periods: 1.0 sec; the fixed-base fundamental period of 309 

the structure (𝑇𝑠𝑡); the initial fundamental period of the site in the far-field (𝑇𝑠𝑜); and lengthened 310 

versions of site period (1.5𝑇𝑠𝑜 and 2𝑇𝑠𝑜). These lengthened site periods reflect the expectation 311 

that a liquefiable site will soften at larger shear strains during shaking.  In addition to 𝑆𝑎, we 312 

include average pseudo-spectral acceleration (𝑆𝑎,𝑎𝑣𝑔). 𝑆𝑎,𝑎𝑣𝑔 reflects the frequency content 313 

over a range of periods, and is therefore more effective than single-period values of 𝑆𝑎 for 314 

predicting nonlinear structural response (e.g., Bianchini et al. 2009; De Biasio et al. 2014). This 315 

improvement in performance is due to the fact that: (1) structures have multiple modal periods, 316 

and (2) a structure’s period changes as its strength and stiffness are altered by degradation 317 

during shaking, an effect which we also anticipate in soil columns. In the equation for 𝑆𝑎,𝑎𝑣𝑔, 318 

𝑇𝑖 are discrete periods used to represent the range from 𝑇1 to 𝑇2, and 𝑁 is the number of discrete 319 

periods considered. We use 100 evenly spaced 𝑇𝑖 ranging from 𝑇1 to 𝑇2. This equation uses 𝑇1 320 

and 𝑇2 to arbitrarily represent the window of periods over which 𝑆𝑎 is being averaged. 321 

Subsequently, various versions of 𝑆𝑎,𝑎𝑣𝑔 will be described with different values of 𝑇1 and 𝑇2 322 

(e.g., 𝑆𝑎,𝑎𝑣𝑔(0.2𝑇𝑠𝑜 , 1.5𝑇𝑠𝑜) for the average spectral acceleration over the period range from 323 

20% to 150% of the initial site period). 324 

EFFICIENCY AND SUFFICIENCY OF IMS FROM THE NUMERICAL DATABASE 325 

First, we evaluate efficiency and sufficiency of all the considered IMs for settlement and tilt 326 

using the complete numerical database of all models and motions, describing this assessment 327 
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as “comprehensive” and labeled with a subscript 𝐶, i.e. 𝐸𝐷𝑃,𝐶, 𝑆𝐷𝑃,𝑀,𝐶, and 𝑆𝐷𝑃,𝑅,𝐶. If this data 328 

were used to create predictive relations of DPs with consistent IM(s), the comprehensive 329 

quality metrics would be directly linked to the final uncertainty and bias in those relations.  330 

Second, we investigate the model-specific (or “parametric”) efficiency and sufficiency 331 

of IMs as a function of various soil profile, foundation, or structure input parameters (e.g., 332 

foundation width, 𝐵, or foundation bearing pressure, 𝑞), denoted with a subscript 𝑃 (𝐸𝐷𝑃,𝑃, 333 

𝑆𝐷𝑃,𝑀,𝑃, and 𝑆𝐷𝑃,𝑅,𝑃), because each is considered as a function of an input parameter. The 334 

parametric quality metrics allow us to identify situations in which certain IMs are more or less 335 

desirable, which might influence IM selection if an IM is poor in critical ranges of primary 336 

parameters. These values are calculated in the same manner as the comprehensive values, but 337 

using only the results from one specific model at a time (i.e., using analyses with all ground 338 

motions from one model, rather than all model-motion combinations together). By considering 339 

these values for a subset of models in which only one parameter was varied, we can observe 340 

the influence of a parameter on the efficiency and sufficiency of various IMs in isolation. 341 

COMPREHENSIVE EVALUATION OF SINGLE IMS 342 

We first consider the comprehensive efficiency and sufficiency of single IMs in predicting the 343 

permanent settlement of foundation (i.e., subscript S) in the numerical database. Recall that 344 

this settlement captures primarily the deviatoric-type deformations, but also partially captures 345 

volumetric deformations, mainly those resulting from partial drainage during shaking (Karimi 346 

et al. 2018; Bullock et al. 2018a). Figures 3 and 4 show efficiency (x-axis) and sufficiency (y-347 

axis) for each IM. Recall that smaller values of 𝑆𝑆,𝑀,𝐶, 𝑆𝑆,𝑅,𝐶, and 𝐸𝑆,𝐶 are better, so values 348 

plotted closer to the lower left are most sufficient and efficient. For values of efficiency and 349 

sufficiency of specific IMs, please refer to Tables A1 and A2 in Appendix A. 350 

These figures show that evolutionary IMs perform consistently better than peak 351 

transient and duration-related IMs in terms of 𝐸𝑆,𝐶 and 𝑆𝑆,𝑀,𝐶. The latter may be a result of 352 

these IMs incorporating effects of both the amplitude and duration of motion. Peak transient 353 

IMs generally have better sufficiency with respect to distance (𝑆𝑆,𝑅,𝐶), but this depends on the 354 

location. In particular, 𝑆𝑎-based measures have relatively better 𝑆𝑆,𝑅,𝐶. The results also show 355 

that all IMs tend to be more sufficient with regard to distance than magnitude (𝑆𝑆,𝑅,𝐶 = 0% to 356 

20% compared to 𝑆𝑆,𝑀,𝐶 = 0% to 50%). The significant durations (𝐷5−75 and 𝐷5−95) are the 357 
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least efficient and sufficient regardless of location. However, we expect the duration measures 358 

to be more beneficial when paired with another amplitude-dependent IM.   359 

Within each category of IM, the outcropping rock (OR) and within-rock (WR) motions 360 

are consistently more efficient and sufficient than the surficial motions. We hypothesize that 361 

this is because the OR and WR motions represent the seismic excitation applied to the entire 362 

system, where the surficial locations each only reflect a portion of that excitation (often highly 363 

de-amplified at higher frequencies due to wave propagation through a softened soil profile), 364 

which might therefore only provide good predictive capability of certain deformation modes. 365 

For example, volumetric deformations within thick liquefiable layers may not be well captured 366 

if only the de-amplified /modified nonlinear motion is used.  The equivalent-linear far-field 367 

(FF-EL) location is more efficient and sufficient than the other surficial locations (FF-NL and 368 

FN-NL) for most IMs, because it incorporates vertical propagation of shear waves through the 369 

soil column without capturing strong soil nonlinearity, pore pressure generation, and the 370 

resulting de-amplification of high-frequency accelerations. Evolutionary IMs at the OR and 371 

WR locations are also more sufficient than peak transient IMs at the same locations with regard 372 

to distance.  373 

Among single IMs, variants of 𝐶𝐴𝑉 at the WR or OR locations offer the best 374 

combination of efficiency and sufficiency for predicting foundation settlement. Conversely, no 375 

single IM offers a clearly “optimum” combination of efficiency and sufficiency for residual tilt 376 

(figures provided in Appendix D). Vector IMs consisting of one evolutionary and one peak 377 

transient IM may be superior for predicting foundation tilt, and are explored in the next section. 378 

COMPREHENSIVE EVALUATION OF VECTOR IMS 379 

The analysis of the quality of single IMs suggests that a vector IM may improve the predictions 380 

of settlement and tilt. Here, Equation 2 is replaced with Equation 7 for calculating 𝜀𝐷𝑃|𝐼𝑀 to 381 

incorporate a second IM. 382 

 ln(𝐷𝑃) = 𝑎0 + 𝑎1 ln(𝐼𝑀1) + 𝑎2 ln(𝐼𝑀2) + 𝜀𝐷𝑃|𝐼𝑀 7 383 

 Table 3 reports the comprehensive efficiency and sufficiency of select pairs of IMs for 384 

predicting settlement. The combinations of IMs presented in the table were selected to show a 385 

representative variety (for instance, all variants of 𝐶𝐴𝑉 have similar performance). For pairs 386 
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including an evolutionary IM and a peak transient IM, efficiency is not improved (up to 3% 387 

change) compared to more efficient individual IMs. However, for pairs including a duration 388 

measure, adding 𝑃𝐺𝐴 or 𝑉𝑔𝑖 yielded better efficiency than either IM alone (up to 11% change). 389 

In particular, the efficiency of 𝐷5−75 and 𝑃𝐺𝐴 or 𝑉𝑔𝑖 is similar to that of 𝐶𝐴𝑉 alone. This 390 

suggests that 𝐶𝐴𝑉 incorporates the effects of both the amplitude and duration of motion on 391 

foundation settlement. 392 

 As discussed above, evolutionary IMs are generally more sufficient with regard to 393 

magnitude and less sufficient with regard to distance than peak transient IMs. The IM pairs 394 

including one evolutionary and one peak transient IM are relatively sufficient with regard to 395 

both magnitude and distance (𝑆𝑆,𝑅,𝐶  𝑜𝑟 𝑆𝑆,𝑀,𝐶 <4%). Combining a duration measure with a 396 

peak transient IM also offers improved sufficiency compared to one or the other IM, but pairs 397 

including an evolutionary IM remain generally more sufficient. The results for predicting tilt 398 

in Appendix D are similar: pairs of IMs offer marginal improvements in efficiency and 399 

substantial improvements in sufficiency.  400 

PARAMETRIC EVALUATION OF IMS  401 

Although the comprehensive metrics of efficiency and sufficiency reflect the development of 402 

general procedures for estimating liquefaction consequences with broad applicability, there 403 

may be certain soil profiles, foundations, or structures in which different IMs are optimum.  404 

 Figure 5 shows 𝐸𝑆,𝑃 as a function of three aspects of soil profile geometry: (a) the total 405 

deposit depth (𝐻𝑑𝑒𝑝), (b) the thickness of the liquefiable layer (𝐻𝐿), and (c) the thickness of 406 

non-liquefiable crust at the surface (𝐷𝐿). We select these parameters because 𝐻𝐿 and 𝐷𝐿 were 407 

identified as having critical influence on settlement in past studies (Karimi et al. 2018), and we 408 

expect 𝐻𝑑𝑒𝑝 to shed light on the choice between the base and surficial motions in predicting 409 

foundation settlement. Note that in this section, we exclude the within-rock motion, because it 410 

shows similar trends as the outcropping rock motion. 411 

The efficiency of OR IMs is insensitive to 𝐻𝑑𝑒𝑝. While the efficiency of IMs at surficial 412 

locations (i.e., FF-EL, FF-NL and FN-NL) improves for deeper deposits, they are still less 413 

efficient than the outcropping rock motion for even an 80 m-thick deposit. This result 414 

emphasizes that OR or WR motions provide better information in terms of settlement even 415 
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when significant site effects are expected. In Figures 5b and 5c, the efficiency of all IMs 416 

improved for profiles with liquefiable layers that are at the extremes (thin or deep). We expect 417 

small settlements in these cases (Karimi et al. 2018; Bullock et al. 2018a), so this trend in 418 

efficiency may reflect heteroscedasticity with regard to settlement (i.e., that uncertainty is 419 

smaller for smaller predicted settlements). Appendix D provides similar figures for 𝑆𝑆,𝑀,𝑃 and 420 

𝑆𝑆,𝑅,𝑃, which were less sensitive to changes in the profile’s geometry.  421 

Appendix D provides similar figures for 𝐸𝜃,𝑃 as a function of both profile geometry and 422 

foundation properties. Trends are not as apparent for predicting tilt, reflecting the increased 423 

uncertainty around numerical predictions of tilt as compared to settlement (Karimi and Dashti 424 

2016b). Figure 6 shows that 𝑆𝜃,𝑀,𝑃 and 𝑆𝜃,𝑅,𝑃 are likewise insensitive to profile geometry and 425 

𝐵. However, both are improved by increases in foundation bearing pressure (𝑞) (Figure 6), 426 

which has a re-centering effect on tilt (Bullock et al. 2018b;2019). All IMs have improved 427 

𝑆𝜃,𝑀,𝑃 and 𝑆𝜃,𝑅,𝑃 for larger 𝑞, which suggests that tilt may be less sensitive to ground motion 428 

intensity in general when 𝑞 is larger. However, this finding does not suggest that any IM is 429 

superior based on sufficiency. 430 

EFFICIENCY OF IMS FROM THE CENTRIFUGE TEST DATABASE 431 

We next consider comprehensive efficiency in the centrifuge experimental database. Due to 432 

the limitations of centrifuge modeling discussed previously, we anticipate that results from 433 

later motions in a given test are more likely to be less useful because the structures and soil 434 

profile begin in a damaged or disturbed state. To address this bias, we replace Equation 2 with 435 

8 for the analysis in this section to include a term for the sequence number of each given test, 436 

𝑁𝑠𝑒𝑞 (𝑁𝑠𝑒𝑞 = 1 for the first motion experienced by a given model). Further discussion of the 437 

selection of this metric for reliability is provided in Appendix E. Efficiency is subsequently 438 

calculated according to the methodology above. 439 

 ln(𝐷𝑃) = 𝑎0 + 𝑎1 ln(𝑁𝑠𝑒𝑞) + 𝑎2 ln(𝐼𝑀) + 𝜀𝐷𝑃|𝐼𝑀 8 440 

EFFICIENCY OF SINGLE IMS 441 

Table 4 reports 𝐸𝑆,𝐶 and 𝐸𝜃,𝐶 of all IMs for transverse motions at the three locations described 442 

above, as well as the rotational motion at the foundation obtained from centrifuge recordings. 443 

In all cases, the OR or WR motion provided better 𝐸𝐷𝑃,𝐶 than any of the surficial locations 444 
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(transverse or rotational). This agrees with the findings from analysis of the numerical data in 445 

the previous section; outcropping rock motion is the best predictor of liquefaction 446 

consequences, perhaps because it reflects the total seismic excitation applied to the soil-447 

foundation-structure system, rather than solely the excitation influenced by site response and 448 

soil softening or damping. Thus, other properties of soil and structure that are critical predictors 449 

of foundation’s settlement or tilt must be considered separately in a predictive model, 450 

independent of the IM. 451 

 The hierarchy of performance among the IMs is similar for predicting foundation 452 

residual tilt in the centrifuge test database to that in the numerical database (Appendix A). Most 453 

IMs have very similar efficiency, with the exception of the significant durations, which perform 454 

worse. For settlement, the superior performance of the evolutionary IMs relative to the peak 455 

transient IMs is still apparent, with the exception of three peak transient IMs that had similar 456 

efficiency to the evolutionary IMs: 𝑆𝑎(𝑇𝑠𝑜), 𝑆𝑎,𝑎𝑣𝑔(0.2𝑇𝑠𝑜 , 1.5𝑇𝑠𝑜), and 𝑆𝑎(0.2𝑇𝑠𝑜 , 2𝑇𝑠𝑜). This 457 

suggests that the frequency content of motion near the fundamental site period (both its initial 458 

and lengthened values) is more efficient for the centrifuge test results than for the numerical 459 

models. Although the numerical models capture softening in the liquefiable layers, they do not 460 

adequately capture the dilation cycles and the corresponding acceleration spikes at large shear 461 

strains over time (Karimi and Dashti 2015, 2016) nor the actual phase change behavior (i.e., 462 

solid-like to fluid-like, and vice versa) of liquefied sand observed in experiments. The shaking 463 

intensity rate (SIR) is also more efficient in the centrifuge results than in the numerical data for 464 

settlement. 465 

EFFICIENCY OF VECTOR IMS 466 

We extend this analysis to consider pairs of IMs. Figure 7 shows 𝐸𝑆,𝐶 of select pairs of 467 

evolutionary and peak transient IMs. The efficiency of pairs of outcropping rock IMs is up to 468 

20% better than the single IMs in the pair for predicting settlement. Generally, the benefits to 469 

efficiency for using a paired IM at other locations are marginal (0% to 5%) for predicting 470 

settlement, and likewise marginal at all locations for predicting residual tilt (figure provided in 471 

Appendix D). However, pairs of transverse foundation IMs including 𝑃𝐺𝐴 and pairs of far-472 

field motion IMs including 𝐶𝐴𝑉𝐷𝑃 benefit substantially (up to 15% improvement in 𝐸𝑆,𝐶). 473 

Paired IMs in these two cases perform similarly to single or paired outcropping rock IMs for 474 

predicting settlement. 475 
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EFFICIENCY OF TRANSVERSE-ROTATIONAL IMS 476 

Table 5 provides 𝐸𝑆,𝐶 and 𝐸𝜃,𝐶 for select pairs of one transverse foundation IM and one 477 

rotational foundation IM. Recall that transverse foundation IMs are calculated using the 478 

horizontal acceleration at the foundation, while rotational foundation IMs are calculated based 479 

on the rotational acceleration of the foundation about its centroid. These pairs generally have 480 

better 𝐸𝑆,𝐶  than single foundation or far-field IMs, but are slightly less efficient than single or 481 

pairs of outcropping rock IMs. However, certain pairs offer the best 𝐸𝜃,𝐶 of any IMs identified 482 

in this study. Specifically, transverse 𝐶𝐴𝑉 paired with rotational 𝐶𝐴𝑉 is 9% more efficient than 483 

any pair of one evolutionary and one peak transient IM measured on outcropping rock. Vector 484 

IMs including another evolutionary transverse IM or transverse 𝑉𝑔𝑖 are also relatively efficient. 485 

PREDICTABILITY OF ALL INTENSITY MEASURES 486 

AVAILABILITY AND UNCERTAINTY OF GROUND MOTION MODELS 487 

Many of the IMs in this study can be directly predicted by GMMs (e.g., 𝑃𝐺𝐴, 𝐶𝐴𝑉, and 𝐷5−75). 488 

However, others require additional effort (e.g., 𝑆𝑎,𝑎𝑣𝑔 and 𝐶𝐴𝑉𝐷𝑃). Additionally, we must first 489 

develop correlation models in order to predict the joint occurrence of paired IMs. Such 490 

correlation models are only currently available for a limited set of IM pairs. 491 

 Table 6 provides a summary of the GMMs in the literature that predict the considered 492 

IMs directly. The lists provided are intended to be representative, but are certainly not 493 

exhaustive. GMMs for 𝑃𝐺𝐴, 𝑃𝐺𝑉, and 𝑆𝑎 are plentiful in the literature. Broadly applicable 494 

models exist for the shallow crustal (e.g., Campbell and Bozorgnia 2014), subduction (e.g., 495 

Atkinson and Boore 2003), and intraplate tectonic environments (e.g., Darragh et al. 2015), 496 

and many models exist for use in specific regions (e.g., Bradley 2013). Models for certain non-497 

spectral IMs are also becoming common and available for more contexts (e.g., Danciu and 498 

Tselentis 2007; Bullock et al. 2017). Although a handful of models currently exist for 499 

predicting the significant duration of motion (Kempton and Stewart 2006; Bommer et al. 2009; 500 

Afshari and Stewart 2016), they are at present limited to the shallow crustal tectonic 501 

environment.  502 

 Models for 𝑆𝑎 can be extended and combined with correlation models to generate 503 

probabilistic predictions of 𝑆𝑎,𝑎𝑣𝑔, as discussed in Eads et al. (2015). Models exist for 504 
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estimating the correlation among 𝑆𝑎 values at multiple periods (e.g., Baker and Bradley 2017), 505 

but only for the shallow crustal tectonic environment. This limits the practicality of using 𝑆𝑎,𝑎𝑣𝑔 506 

in models for predicting liquefaction consequences in other environments. The same limitation 507 

will apply to vector IMs until correlation models are developed for the relevant non-spectral 508 

IMs and for more tectonic environments, although models for the correlation between 𝑆𝑎 and 509 

significant duration exist for shallow crustal events (e.g., Baker and Bradley 2017). 510 

Finally, no model exists for predicting 𝑆𝐼𝑅 directly, but predictions of 𝐴𝐼 and 511 

significant duration can be combined to predict 𝑆𝐼𝑅. However, characterizing the uncertainty 512 

around these predictions would require quantifying the correlation between the errors in 513 

predicting each component. 514 

PREDICTABILITY AS A FUNCTION OF THE DEFINITION OF MOTION 515 

The definition and location of motion has major implications for the predictability of IMs. 516 

First, no GMM includes the effects of soil-structure interaction that influence foundation 517 

(transverse or rotational) motion, meaning that foundation IMs are impractical to predict 518 

without performing nonlinear 3D dynamic analyses of soil-foundation-structure systems using 519 

hazard-representative outcropping rock ground motion records as inputs. Predicting motion at 520 

the far-field surface (FF-EL) and within rock (WR) locations would require performing 1D 521 

equivalent-linear, total-stress site response analyses. However, some GMMs that used 522 

equivalent-linear analyses to constrain their site terms predict the FF-EL intensity directly (e.g., 523 

Walling et al. 2008; Seyhan and Stewart 2014).  These analyses thereby necessitate knowledge 524 

of the density and shear wave velocity of the bedrock at the site, as well as the dynamic 525 

properties of the overlying soil profile.  526 

 GMMs that include site effects (typically as a function of the time-averaged shear wave 527 

velocity in the top 30 m of the site, 𝑉𝑆,30, and sometimes the depth to a layer with shear wave 528 

velocity of 1,000 m/s or 2,500 m/s, 𝑍1.0 or 𝑍2.5) are based on real ground motion recordings. 529 

Therefore, the site effects included are governed by potentially nonlinear, effective stress 530 

behavior, meaning that predictions made by GMMs including site effects most nearly 531 

approximate the FF-NL motion. However, these GMMs are typically only applicable to 𝑉𝑆,30 532 

exceeding 180 m/s and assume that site effects can be described as a logarithmic function of 533 

𝑉𝑆,30, neither of which may be valid for profiles with liquefiable materials (particularly those 534 
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with thick, loose deposits of saturated granular soils). GMMs that assume such simplified site 535 

effects are still based on ground motion records that include real nonlinear effects, meaning 536 

that these effects are reflected only in the model uncertainty. Some GMMs do include more 537 

complex, nonlinear site effects (e.g., Boore et al. 2014) or can be extended to do so (e.g., 538 

Seyhan and Stewart 2014), but these still do not explicitly predict the intensity at the surface 539 

above liquefied sand. Further, some profiles with liquefiable material will have 𝑉𝑆,30 less than 540 

180 m/s, meaning that the functional forms of the GMMs may not yield reasonable estimates 541 

if the true profile 𝑉𝑆,30 is used as an input. Some GMMs predict outcropping rock motion 542 

specifically (e.g., Darragh et al. 2015; Bullock et al. 2017), although models including site 543 

effects can also approximate outcropping rock motion if the shear wave velocity of rock is used 544 

in place of 𝑉𝑆,30. 545 

 We conclude that the outcropping rock motion is more predictable than any of the other 546 

definitions for the site conditions of interest, although 1D equivalent-linear site response 547 

analyses are also routinely performed in practice. Nevertheless, other definitions require more 548 

information and extra analyses (either nonlinear 3D or equivalent-linear 1D simulations), or 549 

tenuous assumptions regarding the linearity of site behavior and the applicability of GMMs 550 

(nonlinear far-field), which would add to the underlying uncertainties. 551 

CONCLUDING REMARKS 552 

According to a comprehensive numerical database containing both 3D nonlinear simulations 553 

of soil-foundation-structure systems and 1D equivalent-linear site response analyses, 554 

outcropping rock 𝐶𝐴𝑉 offers the optimum combination of efficiency, sufficiency, and 555 

predictability for predicting the permanent settlement of shallow-founded structures on 556 

liquefiable sites. Using a vector IM does not notably improve efficiency or sufficiency in 557 

predicting average settlement. Outcropping rock 𝐶𝐴𝑉, 𝑃𝐺𝑉, and 𝑉𝑔𝑖 are the optimum IMs for 558 

predicting foundation’s residual tilt. However, a combination of two of these IMs may be 559 

preferable for tilt predictions, provided a correlation model for their prediction is developed. 560 

 Outcropping rock IMs may be better predictors of foundation settlement and tilt 561 

because they reflect the total seismic demand on the entire soil-foundation-structure system, 562 

rather than only the demand transferred to the foundation (i.e., transverse and rotational 563 

foundation IMs) or the ground surface (i.e., far-field IMs) that are the result of wave 564 
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propagation through a highly nonlinear and softened soil profile. In this sense, outcropping 565 

rock IMs influence not only the accelerations and pore pressures experienced throughout the 566 

soil column, but also soil-structure interaction and all volumetric and deviatoric mechanisms 567 

of deformation active below the foundation. Although IMs on the foundation were better 568 

predictors of foundation’s ratcheting response, they did not perform as well in predicting all 569 

mechanisms contributing to foundation’s cumulative settlement and rotation.   570 

 The available centrifuge experimental data involving mat-founded structures on 571 

liquefiable soils confirm the conclusions above, but also suggest that certain vector IMs may 572 

be particularly efficient (e.g., far-field 𝐶𝐴𝑉𝐷𝑃 and 𝑃𝐺𝐴 for predicting settlement, and vector 573 

transverse-rotational foundation IMs for predicting residual tilt). The higher efficiency of 574 

vector transverse-rotational foundation IMs for predicting tilt show that foundation motion IMs 575 

are more closely tied to ratcheting-type deformations and are expected to have a stronger 576 

relative influence on tilt than on settlement. These vector IMs are currently less predictable 577 

than single outcropping rock IMs, however, and using outcropping rock IMs may therefore be 578 

preferable when developing predictive models for settlement and tilt (Bullock et al. 579 

2018a,2019). The centrifuge database includes similar variation in ground motion intensity to 580 

that in the numerical database, but considerably less variation in soil-foundation-structure 581 

system parameters. In this sense, the results presented based on the centrifuge data serve to 582 

validate the conclusions based on the numerical data, while also elucidating the influence of 583 

rotational foundation motion. 584 

 Efficiency of IMs in predicting foundation’s settlement improves for profile geometries 585 

where we expect small settlements (i.e., those with thinner or deeper layers of liquefiable 586 

material), which may reflect heteroscedasticity in settlement predictions. The same trend is not 587 

evident for residual tilt. However, the sufficiency of IMs with regard to both source distance 588 

and magnitude improves with increases in foundation bearing pressure, which has a re-589 

centering effect on tilt. Tilt may therefore be less sensitive to ground motion intensity when 590 

bearing pressure is large. The hierarchy of IMs and their locations appears insensitive to the 591 

soil-foundation-structure parameters considered, which suggests that parametric efficiency and 592 

sufficiency do not influence IM selection for model development. 593 

The conclusions summarized above are counterintuitive when considered in the context 594 

of many simplified procedures for liquefaction triggering that use the free-field surface cyclic 595 
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stress ratio (𝐶𝑆𝑅) as the IM (e.g., Youd and Idriss 2001; Boulanger and Idriss 2014). Although 596 

it is not clear whether this IM was the most optimum choice for predicting liquefaction 597 

triggering (e.g., Kramer and Mitchell 2006), these procedures are based on observations of 598 

surficial manifestations of liquefaction away from the structure and therefore do not 599 

incorporate its influence on building performance. The existing body of literature for predicting 600 

liquefaction triggering in the free-field may not translate directly to the prediction of 601 

liquefaction consequences on shallow-founded structures (e.g., Karimi et al. 2018).  602 

The relative efficiency of the outcropping rock motion may reflect the following 603 

distinction: surficial motion is predictive of surficial manifestations of liquefaction away from 604 

structures, but the rock seismic excitation input to the system is more predictive of the 605 

consequences for shallow-founded structures. Further research is needed to rule out the 606 

influence of numerical modeling choices (e.g., selection and calibration of soil constitutive 607 

models) on this conclusion, although past research suggests that this is not the case (e.g., 608 

Ramirez et al. 2018). Additionally, Kramer and Mitchell (2006) identified CAV_5 of the 609 

outcropping rock motion as an efficient, sufficient, and predictable IM for evaluating the 610 

liquefaction hazard in the free-field, thereby setting a precedent for using outcropping rock 611 

evolutionary IMs for predicting liquefaction and its consequences. For forward analysis, CSR 612 

may be somewhat impractical because it is often calculated from the PGA at the surface, which 613 

is not easily predictable in the presence of liquefiable sands, unless one ignores the generation 614 

of pore pressures and liquefaction through equivalent-linear analyses (as is commonly done in 615 

practice). Outcropping rock IMs are easily predictable for forward analysis (e.g., Bullock et al. 616 

2017), but must typically also be estimated using GMMs for analysis of past scenarios. This 617 

limitation of outcropping rock IMs can be overcome by using the GMM’s median prediction 618 

or by treating the IM value as a random variable with median and standard deviation provided 619 

by the GMM (e.g., Bullock et al. 2018a). 620 

Karimi and Dashti (2017) and Dashti and Karimi (2017) likewise showed that 621 

cumulative absolute velocity (𝐶𝐴𝑉) at the base of the soil column was the optimum IM for 622 

predicting settlement. This study corroborates that earlier finding using a larger database 623 

including both numerical and experimental results and with a larger variety of candidate IMs 624 

and IM locations. However, this study also identifies potential vector IMs for predicting 625 

settlement and extends this analysis to the prediction of residual tilt. The previous studies 626 

identified peak ground velocity (𝑃𝐺𝑉) as the best predictor of rocking drift. This study also 627 
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identifies 𝑃𝐺𝑉 as a useful IM for this purpose, but shows that peak incremental ground velocity 628 

(𝑉𝑔𝑖) – which was not previously considered – may perform better, and that either IM may be 629 

improved through combination with 𝐶𝐴𝑉. Further, this study confirms that outcropping rock 630 

IMs and within-rock IMs are nearly equivalent in their performance for the particular problem 631 

of interest, validating the use of outcropping rock IMs in the determination of hazard levels 632 

and selection of ground motions as inputs to analyses of liquefaction consequences on 633 

structures (e.g., Kramer and Mitchell 2006; Karimi et al. 2018). This finding has immediate 634 

utility for practitioners and researchers working to assess liquefaction consequences.  635 

The main implications of this study for future development of models for predicting the 636 

consequences of liquefaction on shallow foundations are threefold: (1) models must clearly 637 

and carefully select a definition of “motion,” because the efficiency, sufficiency, and 638 

predictability of IMs is very sensitive to this definition; (2) models using vector IMs should 639 

consider the additional uncertainty added due to correlation among IMs, which may counteract 640 

any benefits to efficiency and sufficiency; and (3) models using surficial IMs should consider 641 

how users will calculate those IMs, as well as whether those IMs fail to capture any effects of 642 

the total seismic excitation on the soil column. Bullock et al. (2018a) used outcropping rock 643 

𝐶𝐴𝑉 as the IM in a predictive model for foundation settlement on the basis of efficiency, 644 

sufficiency, and predictability, and Bullock et al. (2019) used outcropping rock 𝐶𝐴𝑉 and 𝑉𝑔𝑖 645 

as the IMs in a predictive model for foundation residual tilt. The latter selected IMs using cross 646 

validation, but the selections align with the findings of this study. 647 

This study presents the most comprehensive analysis of the performance of various IMs 648 

for predicting foundation settlement and residual tilt on liquefiable sites to date. It identifies 649 

the optimum IMs for predicting both of these consequences given the current availability of 650 

ground motion models. The results highlight the importance of considering both predictive 651 

performance (efficiency and sufficiency) and predictability in IM selection when developing 652 

probabilistic models for the consequences of liquefaction on mat-founded structures. These 653 

findings are applicable only to structures on stiff mat foundations, and their applicability to 654 

other shallow foundation systems (e.g., isolated spread or strip foundations) is unknown. 655 
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Table 1. Summary of the centrifuge experimental database. 860 

Reference Number of data points 

Allmond and Kutter (2012, 2013) 74 

Dashti et al. (2010a,b) 18 

Olarte et al. (2017) 10 

Paramasivam et al. (2017) 3 

 861 

  862 
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Table 2. Intensity measures considered in this study. 863 

Type IM Equation Reference 

PTa) 𝑃𝐺𝐴 𝑃𝐺𝐴 = max(|𝑎(𝑡)|) - 

PT 𝑃𝐺𝑉 𝑃𝐺𝑉 = max |(∫ 𝑎(𝑡)𝑑𝑡
𝑡

0
)|  - 

PT 𝑉𝑔𝑖 𝑉𝑔𝑖 = max
𝑖

(∫ |𝑎(𝑡)|𝑑𝑡
𝑡𝑖2

𝑡𝑖1
)  Jampole et al. 2016 

PT 𝑆𝑎(1.0) - - 

PT 𝑆𝑎(𝑇𝑠𝑡) - - 

PT 𝑆𝑎(𝑇𝑠𝑜) - - 

PT 𝑆𝑎(1.5𝑇𝑠𝑜) - - 

PT 𝑆𝑎(2𝑇𝑠𝑜) - - 

PT 𝑆𝑎,𝑎𝑣𝑔(0.2𝑇𝑠𝑡, 3𝑇𝑠𝑡) 𝑆𝑎,𝑎𝑣𝑔(0.2𝑇𝑠𝑡, 3𝑇𝑠𝑡) = (∏ 𝑆𝑎(𝑇 = 𝑇𝑖)𝑁
𝑖=1 )

1 𝑁⁄
  Eads et al. 2015 

PT 𝑆𝑎,𝑎𝑣𝑔(0.2𝑇𝑠𝑜, 1.5𝑇𝑠𝑜) 𝑆𝑎,𝑎𝑣𝑔(0.2𝑇𝑠𝑜, 1.5𝑇𝑠𝑜) = (∏ 𝑆𝑎(𝑇 = 𝑇𝑖)𝑁
𝑖=1 )

1 𝑁⁄
  - 

PT 𝑆𝑎,𝑎𝑣𝑔(0.2𝑇𝑠𝑜, 2𝑇𝑠𝑜) 𝑆𝑎,𝑎𝑣𝑔(0.2𝑇𝑠𝑜, 2𝑇𝑠𝑜) = (∏ 𝑆𝑎(𝑇 = 𝑇𝑖)𝑁
𝑖=1 )

1 𝑁⁄
  - 

EVb) 𝐶𝐴𝑉 𝐶𝐴𝑉 = ∫ |𝑎(𝑡)|𝑑𝑡
𝑡𝑑

0
  EPRI 1998 

EV 𝐶𝐴𝑉5 𝐶𝐴𝑉5 = ∫ 𝜒〈𝑎(𝑡)〉|𝑎(𝑡)|𝑑𝑡
𝑡𝑑

0
b)  Kramer and Mitchell 2006 

EV 𝐶𝐴𝑉𝑆𝑇𝐷 𝐶𝐴𝑉𝑆𝑇𝐷 = ∑ (𝐻(𝑃𝐺𝐴𝑖 − 0.025) ∫ |𝑎(𝑡)|𝑑𝑡
𝑖

𝑖−1
)

𝑡𝑑
𝑖=1

b)  EPRI 2006 

EV 𝐶𝐴𝑉𝐷𝑃 - Campbell and Bozorgnia 2011 

EV 𝐴𝐼 𝐴𝐼 =
𝜋

2𝑔
∫ 𝑎(𝑡)2𝑑𝑡

𝑡𝑑

0
  Arias 1970 

DRc) 𝐷5−75 - Bommer and Martinez-Pereira 1999 

DR 𝐷5−95 - Bommer and Martinez-Pereira 1999 

DR 𝑆𝐼𝑅75 𝑆𝐼𝑅75 =
0.7𝐴𝐼

𝐷5−75
  Dashti et al. 2010a 

DR 𝑆𝐼𝑅95 𝑆𝐼𝑅95 =
0.9𝐴𝐼

𝐷5−75
  Dashti et al. 2010a 

a) Peak transient; b) Evolutionary; c) Duration-related 864 
b) 𝜒〈⋅〉: a filter that is zero when the argument is below 5 cm/s2; 𝐻(⋅): the Heaviside step function. 865 

 866 

  867 
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Table 3. Comprehensive efficiency (𝐸𝑆,𝐶) and sufficiency with respect to magnitude and distance-to-868 
rupture (𝑆𝑆,𝑀,𝐶 and 𝑆𝑆,𝑅,𝐶) of selected pairs of outcropping rock IMs, as compared to the values for 869 

each individual IM, for predicting settlement. The columns for either “𝐼𝑀1” or “𝐼𝑀2” report values 870 
calculated using only that IM, while the columns for “𝐼𝑀1 and 𝐼𝑀2” use both IMs. 871 

𝑰𝑴𝟏 𝑰𝑴𝟐 

𝑬𝑺,𝑪 𝑺𝑺,𝑴,𝑪 𝑺𝑺,𝑹,𝑪 

𝑰𝑴𝟏 𝑰𝑴𝟐 
𝑰𝑴𝟏 and 

𝑰𝑴𝟐 
𝑰𝑴𝟏 𝑰𝑴𝟐 

𝑰𝑴𝟏 and 

𝑰𝑴𝟐 
𝑰𝑴𝟏 𝑰𝑴𝟐 

𝑰𝑴𝟏 and 

𝑰𝑴𝟐 

𝐶𝐴𝑉 𝑃𝐺𝐴 0.68 0.81 0.68 0.00 0.31 0.02 0.11 0.03 0.01 

𝐶𝐴𝑉 𝑉𝑔𝑖 0.68 0.76 0.66 0.00 0.24 0.03 0.11 0.11 0.02 

𝐶𝐴𝑉 𝑆𝑎(1.0) 0.68 0.78 0.66 0.00 0.23 0.02 0.11 0.09 0.01 

𝐶𝐴𝑉 𝑆𝑎,𝑎𝑣𝑔(0.2𝑇𝑠𝑜, 2𝑇𝑠𝑜) 0.68 0.77 0.66 0.00 0.28 0.04 0.11 0.08 0.04 

𝐷5−75 𝑃𝐺𝐴 0.90 0.81 0.72 0.27 0.31 0.06 0.33 0.03 0.06 

𝐷5−75 𝑉𝑔𝑖 0.90 0.76 0.70 0.27 0.24 0.06 0.33 0.11 0.02 

𝐷5−75 𝑆𝑎(1.0) 0.90 0.78 0.75 0.27 0.23 0.11 0.33 0.09 0.06 

𝐷5−75 𝑆𝑎,𝑎𝑣𝑔(0.2𝑇𝑠𝑜, 2𝑇𝑠𝑜) 0.90 0.77 0.69 0.27 0.28 0.06 0.33 0.08 0.04 

 872 

  873 
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Table 4. Comprehensive efficiency for all IMs at all locations for predicting foundation settlement 874 
(𝐸𝑆,𝐶) and residual tilt (𝐸𝜃,𝐶) for the centrifuge test results. All IMs for the outcropping rock, far-field 875 

surface, and transverse foundation accelerations are calculated based on recorded horizontal 876 
accelerations, while the IMs for the rotational foundation acceleration are calculated based on 877 

recorded rotational accelerations around the foundation centroid. 878 

𝑰𝑴 

Outcropping 

rock 
Far-field 

Foundation 

(transverse) 

Foundation 

(rotational) 

𝑬𝑺,𝑪 𝑬𝜽,𝑪 𝑬𝑺,𝑪 𝑬𝜽,𝑪 𝑬𝑺,𝑪 𝑬𝜽,𝑪 𝑬𝑺,𝑪 𝑬𝜽,𝑪 

𝐶𝐴𝑉 0.57 0.97 0.80 1.22 0.64 1.10 0.73 1.19 

𝐶𝐴𝑉5 0.52 0.96 0.76 1.14 0.64 1.11 - - 

𝐶𝐴𝑉𝑆𝑇𝐷 0.53 0.97 0.80 1.17 0.65 1.11 - - 

𝐶𝐴𝑉𝐷𝑃 0.50 0.96 0.68 1.19 0.68 1.10 - - 

𝐴𝐼 0.45 0.95 0.80 1.21 0.65 1.11 - - 

𝑃𝐺𝐴 0.46 0.95 0.78 1.15 0.58 1.07 0.73 1.13 

𝑃𝐺𝑉 0.79 1.15 0.81 1.22 0.70 1.13 0.80 1.23 

𝑉𝑔𝑖 0.57 1.02 0.80 1.22 0.70 1.17 0.72 1.16 

𝑆𝑎(1.0) 0.50 0.98 0.81 1.20 0.68 1.09 0.80 1.18 

𝑆𝑎(𝑇𝑠𝑡) 0.56 1.05 0.79 1.17 0.66 1.03 0.77 1.16 

𝑆𝑎(𝑇𝑠𝑜) 0.45 0.97 0.79 1.17 0.68 1.07 0.67 1.05 

𝑆𝑎(1.5𝑇𝑠𝑜) 0.52 1.03 0.79 1.18 0.65 1.05 0.67 0.99 

𝑆𝑎(2𝑇𝑠𝑜) 0.50 1.01 0.80 1.19 0.69 1.14 0.77 1.13 

𝑆𝑎,𝑎𝑣𝑔(0.2𝑇𝑠𝑡, 3𝑇𝑠𝑡) 0.61 1.08 0.78 1.17 0.62 1.04 0.67 1.00 

𝑆𝑎,𝑎𝑣𝑔(0.2𝑇𝑠𝑜, 1.5𝑇𝑠𝑜) 0.44 0.98 0.79 1.16 0.63 1.05 0.66 1.05 

𝑆𝑎,𝑎𝑣𝑔(0.2𝑇𝑠𝑜, 2𝑇𝑠𝑜) 0.45 0.98 0.79 1.17 0.64 1.07 0.68 1.06 

𝐷5−75 0.83 1.22 0.82 1.20 0.82 1.20 - - 

𝐷5−95 0.80 1.22 0.82 1.20 0.81 1.21 - - 

𝑆𝐼𝑅75 0.46 0.98 0.80 1.20 0.70 1.16 - - 

𝑆𝐼𝑅95 0.52 1.02 0.80 1.20 0.73 1.17 - - 

 879 

 880 
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Table 5. Comprehensive efficiency for pairs of transverse and rotational foundation motion IMs for 882 
predicting foundation settlement and residual tilt for the centrifuge test results. The columns for either 883 
“𝐼𝑀1” or “𝐼𝑀2” report values calculated using only that IM (i.e., only a transverse or a rotational IM), 884 

while the columns for “𝐼𝑀1 and 𝐼𝑀2” use both IMs. 885 

Transverse IM 

(𝑰𝑴𝟏) 

Rotational IM 

(𝑰𝑴𝟐) 

𝑬𝑺,𝑪 𝑬𝜽,𝑪 

𝑰𝑴𝟏 𝑰𝑴𝟐 𝑰𝑴𝟏 and 𝑰𝑴𝟐 𝑰𝑴𝟏 𝑰𝑴𝟐 𝑰𝑴𝟏 and 𝑰𝑴𝟐 

𝐶𝐴𝑉 𝐶𝐴𝑉 0.64 0.73 0.63 1.10 1.19 0.86 

𝐶𝐴𝑉 𝑃𝐺𝐴 0.64 0.73 0.63 1.10 1.13 0.92 

𝑉𝑔𝑖 𝐶𝐴𝑉 0.70 0.73 0.58 1.17 1.19 0.95 

𝑉𝑔𝑖 𝑃𝐺𝐴 0.70 0.73 0.61 1.17 1.13 0.94 

𝑃𝐺𝐴 𝐶𝐴𝑉 0.58 0.73 0.60 1.07 1.19 1.05 

 886 

  887 
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Table 6. Model availability and prediction uncertainty for IMs which can be predicted directly by 888 
GMMs. 889 

IM Models 
Tectonic 

environments 

Prediction 

uncertainty (𝝈𝒑) 

𝐶𝐴𝑉 
Danciu and Tselentis (2007), Campbell and Bozorgnia (2010), 

Foulser-Piggott and Goda (2015), Bullock et al. (2017) 
C1, S2, I3 0.4 to 0.7 

𝐶𝐴𝑉5 
Kramer and Mitchell (2006), Danciu and Tselentis (2007), Bullock 

et al. (2017) 
C, S, I 0.7 to 0.9 

𝐶𝐴𝑉𝑆𝑇𝐷 Bullock et al. (2017) C, S, I 0.5 to 0.7 

𝐶𝐴𝑉𝑆𝑇𝐷 Campbell and Bozorgnia (2011) C 0.6 

𝐴𝐼 
Travasarou et al. (2003), Danciu and Tselentis (2007), Stafford et 

al. (2009), Foulser-Piggott and Goda (2015), Bullock et al. (2017) 
C, S, I 1.0 to 1.4 

𝑃𝐺𝐴, 

𝑆𝑎(𝑇) 

Atkinson and Boore (2003), Boore et al. (2014), Abrahamson et al. 

(2013), Campbell and Bozorgnia (2014), Chiou and Youngs (2014), 

Darragh et al. (2015) 

C, S, I 0.3 to 0.8 

𝑃𝐺𝑉 

Atkinson and Boore (2003), Danciu and Tselentis (2007), 

Abrahamson et al. (2013), Boore et al. (2014), Campbell and 

Bozorgnia (2014), Chiou and Youngs (2014), Darragh et al. (2015) 

C, S, I 0.5 to 0.8 

𝑉𝑔𝑖 Bullock et al. (2017) C, S, I 0.5 to 0.7 

𝐷5−75, 

𝐷5−95 

Kempton and Stewart (2006), Bommer et al. (2009), Afshari and 

Stewart (2016)  
C 0.3 to 0.8 

1Shallow crustal; 2Subduction; 3Intraplate 890 
 891 
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 894 

Figure 1. Schematic view of the locations considered when defining the motion. 895 
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 897 

 898 

Figure 2. Schematic of numerical model (Karimi et al. 2018) and summary table of parameters that 899 
were varied in numerical dataset used here. 900 
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 902 

Figure 3. Comprehensive efficiency and sufficiency with regard to magnitude for all IMs for 903 
predicting foundation settlement, based on the numerical database. IMs at all locations are included: 904 
outcropping rock (OR), within-rock (WR), far-field calculated using equivalent-linear analyses (FF-905 

EL), far-field calculated using nonlinear analyses (FF-NL), and foundation (FN-NL). Different shapes 906 
are used for peak transient, evolutionary, and duration-related IMs; different colors reflect different 907 

locations. 908 
  909 
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 910 

Figure 4. Comprehensive efficiency and sufficiency with regard to distance for all IMs for predicting 911 
foundation settlement, based on the numerical database. IMs at all locations are included: outcropping 912 
rock (OR), within-rock (WR), far-field calculated using equivalent-linear analyses (FF-EL), far-field 913 
calculated using nonlinear analyses (FF-NL), and foundation (FN-NL). Different shapes are used for 914 

peak transient, evolutionary, and duration-related IMs; different colors reflect different locations. 915 
 916 

  917 
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 918 

Figure 5. Parametric efficiency as a function of deposit depth, liquefiable layer thickness, and non-919 
liquefiable crust thickness for all IMs for predicting foundation settlement, based on the numerical 920 

database. IMs at select locations are included: outcropping rock (OR), far-field calculated using 921 
equivalent-linear analyses (FF-EL), far-field calculated using nonlinear analyses (FF-NL), and 922 

foundation (FN-NL). 923 
 924 

  925 
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  926 

Figure 6. Parametric sufficiency with regard to both magnitude (left) and distance (right) as a 927 
function of bearing pressure for all IMs at select locations for predicting residual tilt, based on the 928 

numerical database. IMs at select locations are included: outcropping rock (OR), far-field calculated 929 
using equivalent-linear analyses (FF-EL), far-field calculated using nonlinear analyses (FF-NL), and 930 

foundation (FN-NL). 931 
  932 
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 933 

Figure 7. Comprehensive efficiency for select paired IMs at all locations for predicting foundation 934 
settlement based on the centrifuge test results. 935 


