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Abstract 
This study proposes a framework for the assessment of the performance of reinforced concrete (RC) buildings following 
significant earthquakes. Of particular interest is the effect of damage in changing in a structure’s capacity to withstand 
future shaking events.  

First, nonlinear three-dimensional models representative of a RC building of interest are developed in OpenSees 
and subjected to an initial incremental dynamic analysis (IDA) to develop a discrete set of initial damage conditions. 
Following each dynamic analysis, a static pushover is run to quantify loss of strength, stiffness, and deformation capacity 
from the ground motion.  A representative subset of the initial damage conditions is selected using particle swarm 
optimization to be used in subsequent analyses. The selection criteria used to identify these conditions includes strength, 
stiffness, deformation capacity, and residual drift. Subsequent analyses are employed to assess the performance of the 
damaged building at target shaking intensities that correspond to serviceability, design earthquake (DE), and maximum 
considered earthquake (MCE) demands. In each subsequent analysis, the building is first subjected to an initial motion 
that replicates the initial damage condition, and then a second motion at a target performance level. 

The drift demands in the damaged building are compared to those in the undamaged building, and the results of 
these analyses are used to create a model indicating what damage in the first motion is so severe that it impairs 
performance. Trends between metrics of the initial damage condition and change in demand are observed.  

This process begins with results from the initial set of initial damage conditions, which are used to develop a model 
of which points are most informative. Additional initial damage condition cases are selected using a random forest to 
predict which points will be most informative in the model. 

An example building model representing a modern, ductile RC frame was analyzed using this framework. For this 
ductile building, substantial damage could be incurred in a first motion before impairing even serviceability performance. 
The damage level at which performance was affected increased with the shaking intensity of the subsequent motion (i.e., 
the change in performance in at serviceability levels happens at lower damage than the change at MCE levels). Peak story 
drift was the most strongly correlated indicator of subsequent performance at all shaking intensities. 
Keywords: incremental dynamic analysis; post-earthquake performance; machine learning; RC structures  
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1. Introduction 
This study proposes and illustrates a framework for the assessment of post-earthquake performance of 
reinforced concrete (RC) structures. We are particularly interested in identifying those measures of damage 
which most strongly correlate with performance in subsequent earthquake events, and what levels of damage 
compromise future performance.  

This information can be used to guide decision-making for post-earthquake building assessment. Repair 
decisions depend on a number of factors, including level of damage, expected performance in a future event, 
feasibility of repair and retrofit, safety perception and codes and standards [1]. We identify three conditions a 
building may be in following an earthquake. First, the building may have sufficient capacity to resist 
subsequent shaking. Second, a building may require repair to return to satisfactory capacity. Third, the building 
may be damaged past feasible repair, and need to be demolished. We have chosen to focus on RC buildings 
because this type of construction is common in the US and abroad, and the quantitative distinctions between 
these categories are unclear. Damage in RC buildings is less discretized than in steel counterparts; instead, a 
spectrum is possible. Marder et al. [2] studied the relationship between deformation demands, observable 
damage (i.e. cracks), and residual stiffness, and found that observable damage did not always correlate strongly 
with residual stiffness of a plastic hinge. Also, yielding of longitudinal reinforcement may not be observable, 
and, due to axial loads, columns may appear undamaged, despite significant peak demands [2]. In addition, 
significant losses and downtime resulting from damage to structural and non-structural components can occur 
even in code-conforming RC buildings [2,3]; in Christchurch, New Zealand, for example,  approximately 65% 
of "significant" RC buildings—commercial and residential buildings more than 5 stories tall—were torn down 
after the earthquake[1]. Post-earthquake decisions are, in reality, highly influenced by non-engineering factors 
such as repair costs, risk perceptions, changes to building code requirements and insurance costs [1], but our 
focus is on structural engineering factors that affect decisions. Indeed, Elwood et al. [4] reflected that 
limitations on the residual capacity of concrete structures and elements also contributed to conservative 
estimations of future performance [4]. 

A focus of this effort is to develop strategies to assess of performance of an earthquake-damaged 
building while avoiding the computationally intensive nature of "back-to-back" analysis. This type of analysis 
requires running many ground motions for the undamaged building and then a subsequent analysis of the 
damaged building, resulting in significant computational time [5]. Accordingly, we employ optimization 
algorithms and machine learning methods to identify a subset of analyses that well-represent the possible 
damage conditions for a structure. Classification and prediction learning methods are adopted to identify 
additional analyses that will improve the results. 

This paper outlines the preliminary development of the framework, and results from an example 
building. This building was developed to represent a modern, ductile RC frame building in California. 

1.1 Review of previous work 
Previously, researchers have observed the change in collapse capacity and drift demands of damaged, modern 
RC frame buildings (in comparison to an undamaged building). For example, Raghunandan et al. [5] found 
that, for modern well-detailed ductile RC frame buildings, drift demands in subsequent events do not increase 
until the mainshock or first event peak story drift exceeds 2% Hosseinpour and Abdelnaby [6] observed a 20% 
change in collapse capacity associated with demands at "life safety" levels in a first event. Zhang et al. [7] 
quantified changes in collapse capacity associated drift demands in  a first (damaging) motion showing: a 7% 
reduction in collapse capacity for a building damaged at 1% drift, and a 40% reduction when the building was 
damaged at 3% drift. In a study of aftershock collapse fragilities of older, less ductile, RC buildings, Jeon et 
al. [8] observed a shift in the collapse fragility  when drift exceeded 1.2% in an initial motion. Similarly, Ryu 
and Luco [9] found that 3.5% drift corresponds with a 25% reduction in capacity. 

Researchers who have studied mainshock-aftershock performance of modern steel frame buildings 
observed similar thresholds as to when damage significantly matters. For example, Ruiz-Garcia and Aguilar 
[10] studied the change in performance associated with residual drift demands from the first motion, and 
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showed that the median spectral acceleration (Sa) at which the demolition threshold is reached is reduced by 
10% if the building retained residual drifts of 1.4%. Li and Song [11] found that "moderate damage", or 
approximately 2.5% peak drift, leads to a 20% reduction in collapse capacity for modern steel buildings. 

Researchers who have studied the effect of ground motion duration have observed similar trends in 
performance. Fairhurst et al. [12] observed that RC shear wall buildings experienced comparable peak 
displacements and peak forces, but higher energy demands during motions with longer durations. They note 
that the number and amplitude of cycles most strongly affect response. Similarly, Raghunandan and Liel [13] 
studied the change in collapse capacity of structures under long duration shaking, and found that long duration 
events decrease the collapse capacity of RC buildings by 26 - 56%, and that the change depends on the ductility 
capacity and period of the structure. Chandramohan et al. [14] also observed a decrease in collapse capacity of 
17% in steel buildings subjected to long duration motions. 

These studies have also indicated what characteristics of buildings may influence these conclusions. 
Mahin [15] found that structures that were relatively weak and had short periods were more likely to develop 
significant inelastic deformations and be more vulnerable to large drift demands to subsequent events. Uma et 
al. [16] showed that the building’s period affected response. Amadio et al. [17] found that highly ductile 
structures do not see a significant "penalty" when subjected to repeated events, though structures with less 
ductility do. Raghunandan et al. [5] showed that buildings that were more susceptible to P-delta effects were 
resultingly more sensitive to mainshock damage. Most of these studies have been for structures without 
significant irregularities.  

2. Framework overview 
The proposed framework (Fig. 1) uses nonlinear dynamic analysis to assess the impact of damage sustained 
during ground shaking on the post-earthquake performance of a building. Post-earthquake performance, here, 
refers to the ability of a damaged building to resist subsequent shaking and meet specified performance goals.  

Incremental dynamic analysis (IDA) is first used to produce a set of initial damage conditions (IDC) 
(Box 1.2). This analysis is used to define the response of a building that result from a range of earthquake 
events. We consider damage metrics related to drifts and changes to strength, deformation capacity, and 
stiffness. The effect of this damage is quantified through a suite of "back-to-back" analyses applied to a subset 
of IDCs that have been selected using an optimization algorithm (Box 2.1.1)  In these back-to-back analyses, 
a first ground motion is applied to replicate the IDC, followed by a second, scaled motion that is used to assess 
whether the building meets various performance targets (Box 2.2.1). These scaled motions are also applied to 
the undamaged building (Box 2.2.2), and the change in drift demand between the undamaged and damaged 
building state is determined (Box 2.3). This response is summarized as the median change in demand over the 
suite of motions applied to a building at a single damage state.  

This framework focuses on the drift response of the structure at target (i.e., serviceability, MCE and DE) 
levels. We are interested in drifts because they are strongly correlated with seismic performance metrics like 
economic losses [18]. We fit a bilinear regression model to these data that show the relationship between 
increased initial damage and drift demand (Box 2.4). The "corner" in the bilinear model is used to identify at 
what levels of damage performance in the subsequent is compromised. In addition, the bilinear regression 
model is used to select additional IDCs for further analysis (Box 3.1, 3.2.1, 3.3, 3.4), identifying which IDCs 
will be most informative in quantifying when damage matters.  

3. Illustrative building example 
We illustrate this framework with a three-story modern RC building designed and detailed for seismic 

loading in California. We chose to begin with a modern RC frame building because, while these buildings tend 
to protect life safety, the type of damage sustained can lead to significant loss and downtime and, thus, repair 
decisions can be important [2,3]. Further, a ductile building tends to lose capacity more gradually rate than a 
brittle building, where performance in a subsequent event drops more precipitously.  
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In this illustrative example building, the bays are 5 m wide, and each story is 3 m tall.  The plan view is 
shown in Fig. 2a. The beam-column strength ratio is 1.4 for typical beam-column joints. From eigenvalue 
analysis, the (undamaged) building's natural period is 1.0 s in both directions. The space frame building has a 
deformation capacity of 7 (quantified as the ratio between post-peak displacement at 80% of peak strength and 
yield strength from [19]). Fig. 2c shows the response of the undamaged building during a static pushover 
analysis in the weaker direction under a triangular lateral load. This pushover shows that the lateral building 
strength (V/W = 0.24 g), initial stiffness and deformation capacity are comparable with modern RC frames 
designed by Haselton et al. [20].  

 
Fig. 1 – Overview of framework for assessment of the performance of an earthquake-damaged 

building in a subsequent event, using optimization and machine learning. 
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A three-dimensional nonlinear model of the building was developed in OpenSees [21]. This model 
employs lumped plasticity for beam and column elements. This approach is chosen for computational 
efficiency and for its advantages in capturing softening behavior with an appropriate hinge model [22]. At each 
beam-column interface, the panel zone was modeled with nearly rigid, elastic elements that represent joint 
size. These joint elements were connected to the elastic frame elements by zero-length hinges modeled using 
the Ibarra Medina Krawinkler (IMK) peak-oriented hysteretic model [23,24] to represent beam and column 
hinging behavior. The model considers cracked stiffness properties for beams and columns. A backbone curve 
for one of the columns (shown in Fig. 2b); backbone/cyclic deterioration parameters were determined using 
the calibration framework described by Haselton et al. [22]. These components are highly ductile.  

   
Fig. 2 – a) Plan view of building. b) Backbone curve of typical column in example building model. c) Static 

pushover of example building in weaker (x) direction in its undamaged state. 

4. Assess performance of undamaged building  
4.1 Initial damage conditions  

In the first phase of the framework, the performance of the undamaged building is evaluated (Box 1.2). The 
goal of this assessment is to quantify the response of the structure under a variety of earthquake events. For 
each analysis (i.e., each ground motion and intensity measure), the response of the structure during dynamic 
analysis is quantified in terms of peak story and roof drifts, and residual drift.  

In our example illustration, each dynamic analysis step consists of one of the pairs of FEMA P-695 far-
field ground motions [19], scaled to increasing shaking intensities until a collapse threshold—10% story drift 
[5,25]—is reached. Shaking intensity is quantified in terms of geometric mean of spectral acceleration at the 
fundamental period of the building. 

An example story drift time history is displayed in Fig. 3. During the analysis, peak story drift is 
measured as the maximum drift experienced in any story at any time during the ground motion. Peak roof drift 
is the highest overall building drift during the ground motion in both orthogonal directions. Residual drift is 
the highest drift in either direction that remains in a story at the end of the ground motion.  

At the end of each ground motion, the period of the damaged building was calculated using eigenvalue 
analysis. The building was also subjected to a static pushover in the x direction following dynamic analysis. 
This pushover provided measures damaged building strength and deformation capacity of the building after 
each initial condition ground motion. Fig. 4 shows the pushover response of the damaged building after the 
same ground motion at different shaking intensities. The damaged building’s strength is derived from the 
maximum base shear during the post-dynamic pushover divided by the building weight. The deformation 
capacity is the ratio of the displacement at 80% of the maximum base shear to the yield displacement.  

Each IDC is based on one of these analyses. An IDC is defined by the ground motion and intensity at 
which it was applied, and has an associated suite of  damage metrics including: peak story drift, peak roof drift, 
residual drift, change in strength (measured from pushover), change in stiffness (measured as the increase in 
fundamental period), and change in deformation capacity (also measured from pushover analysis). Fig. 5 
provides an overview of the range of damage conditions of the example building under various ground motions. 
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Fig. 3 – Story drift time history in the x-direction of the undamaged building at the second story simulated 

during ground motions of increasing shaking intensity for a ground motion recorded from 1971 San 
Fernando Earthquake at the Hollywood station.  

 
Fig. 4 – Static pushover response of the building in the x-direction, simulated after ground motions of 
increasing shaking intensity for a ground motion recorded from 1971 San Fernando Earthquake at the 

Hollywood station.  

  
Fig. 5 – Summary of example undamaged building response in terms of a) peak story drift, b) post-

earthquake strength and c) damaged building period at different shaking intensities. Each point represents an 
IDC; IDCs selected for subsequent analysis are darker circles. All responses are in x-direction. 
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5. Assess performance of earthquake-damaged building 
5.1 Select subset of IDCs using particle swarm optimization algorithm 

We first identified an initial set of 20 IDCs that is representative of all the IDCs using the Particle Swarm 
Optimization (PSO) algorithm [26]. This method employs an optimization algorithm that maximizes the 
distance between the points based on specified input parameters. In this case, the input parameters are damaged 
building strength, damaged building stiffness, residual drift after the first motion, and peak story drift in the 
initial damaging motion. These parameters are selected to ensure that the selected IDCs vary in terms of various 
damage metrics of interest; the selected IDCs are identified in Fig. 5. 

5.2 Identify target performance levels for subsequent analyses 
Of particular interest is the performance of the damaged buildings at target intensity levels: the Maximum 
Considered Earthquake (MCE), Design Earthquake (DE), and Serviceability. We used the USGS Unified 
Hazard Tool [27] to identify the target intensity levels appropriate for the selected building site. For this study, 
the MCE motion corresponds to a return period of 2,475 years, and the DE motion corresponds to a return 
period of 475 years.  

The intensity of a ground motion for serviceability assessment is generally not well defined. Moehle et 
al. [28] suggest consideration of building occupant comfort. Dymiotis-Wellington and Vlachaki [29] consider 
the performance of structural and nonstructural building elements. Although not addressed explicitly or 
quantitatively in the American standards [30], these objectives are typically met by limiting story drifts. 
Dymiotis-Wellington and Vlachaki [29], for example, offers drift limits ranging from 0.5 – 1.0% depending 
on the nature of the building. The serviceability of a structure can alternatively be defined based on the return 
period of an earthquake. For example Wen [31] and PEER [32] assess serviceability with an earthquake 
corresponding to a44 and 43-year return periods. Serviceability ground motion is associated with a 100-year 
return period in Eurocode 8 [33]. The return period adopted for serviceability in the example illustration is 150 
years, which is at the upper bound of values used in the literature. 

For the example building, these levels were identified for a site in California the target ground motion 
intensities were 0.20 g for serviceability, 0.39 g for DE, and 0.86 g for MCE. The ground motion selection 
algorithm developed by Baker and Lee [34,35] was employed to identify twelve motions that matched the 
conditional mean spectrum for the building site for each level based on the hazard deaaggregation from the 
USGS [27]. These motions were scaled to the target serviceability, DE, and MCE levels based on the spectral 
acceleration at the fundamental period. 

5.3 Simulation and evaluation of post-earthquake damage for selected IDCs 
Fig. 6 illustrates the roof displacement time history of the building during each of the twelve analyses for one 
of the IDCs for the DE level. In each analysis, the building is subjected to the initial damaging motion 
(recreating the damage state) and one of the scaled subsequent motions.  

 
Fig. 6 – Story drift time histories in the x-direction of the example building subjected to one IDC and twelve 

subsequent motions scaled to the selected MCE level. 
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The response parameter of interest is the ratio in peak story drift demand during the motion in the 
damaged building as compared to the undamaged building in the same serviceability, DE, or MCE motion. 
The median ratio (over all the records) demands in the damaged to undamaged building quantifies the response 
for each IDC. We then plotted all of the IDCs with the peak story drift experienced in the initial motion on the 
x-axis and median change in drift demand on the y-axis and fit a bilinear regression to the data. This 
relationship is shown in Fig. 7 for the initially selected IDCs. 

We fit a bilinear regression curve to the results obtained from analysis of the first 20 IDCs, as shown in 
Fig. 7. The choice of the bilinear fit was based on the observation that the demands on the building are generally 
unchanged for low levels of damage, but, past some point, increase steadily as the building experiences 
damage. The value identified as "corner" on these plots is the damage level at which the response starts to 
change. This regression was fit with the assumption that the value below the corner is 1 (i.e., the response of 
the damaged and undamaged building is the same). The figure shows that the bilinear regression is a good fit 
to the data; the R2 values are reported in Fig. 8. 

6. Apply machine learning to identify informative damage conditions to run 
This framework employs a machine learning methodology developed by Bullock et al. [36] to improve 
computational efficiency. In this methodology, additional IDCs are selected for analysis based on the estimated 
probability that they will be informative. Informative IDCs are identified from analysis of the initial set as the 
IDCs that have a high influence on the bilinear regression parameters.  

Determination of what IDCs were informative proceeds as follows. For each IDC in our bilinear 
regression, the model error was calculated as the observed ratio between median ratio of damaged to 
undamaged peak story drift from the simulation. minus the value predicted by the model. In this framework, 
points were identified as informative if the model error for a given point (i.e., IDC) was larger than the 75th 
percentile. This threshold ensures that the database is balanced (i.e., there are both informative and non-
informative points) and a classifier can be fit to the data. The probability that a point from the remaining data 
(in this case, IDCs) will be informative is predicted by training a random forest [37] using the points classified 
as informative or not informative from the initial subset. The points identified as informative in the example 
are shown in Fig. 7. 

 
Fig. 7 – Median ratio of drift demand in damaged to undamaged building for each IDC for the DE level. 

These data are fit to a bilinear regression, and IDCs with the highest model error are noted as “informative”. 

The regression model is improved by running additional IDCs. The additional points or IDCs are 
selected based on their likelihood of improving the model. This is based on the probability that point will be 
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informative, P(informative), multiplied by the minimum Euclidean distance between each potential point and 
the points from the initial subset in parameter space [36]. 

In all cases, the peak story drift experienced in an initial damaging ground motion was strongest 
predictor of performance in a subsequent motions. This observation is consistent with past research, where 
drift demand indicative of the remaining capacity of a structure in a subsequent event [8,11,17,38–40]. Fig. 8a 
reports the goodness of the bilinear regression model fit when different damage metrics are selected. In general, 
the drift measures were the strongest predictor of post-earthquake performance, with residual and roof drifts 
R2 values exceeding 0.8.  

We noted the quality of bilinear model fit as additional analyses were run; these values are displayed in 
Fig. 8b-c. IDCs were selected based on the likelihood that they would inform the model, and points were 
identified as informative if they had large error. Thus, it is logical that the model fit, quantified by the R2 value, 
is largely unchanged as the number of analyses increases.  The corner point (i.e., damage threshold) changes 
as additional analyses are included in the model, but the value tends to remain steady after approximately 30 
analyses have been run. The slope trends similarly. 

This method allows us to run fewer analyses than would be necessary using the "brute force" "back to 
back" method, where all IDCs are analyzed. The computational time to run 20 IDCs—6% of total ICDs—
through one level of subsequent analysis requires approximately 24 hours of computational time. As is evident 
in Fig. 8b, the results remain largely unchanged as the number of analyses increases past 30 IDCs. 

 
Fig. 8 – a) R2 values for various damage metrics and target performance levels. b) Progression of bilinear 

model fit for DE level analyses showing regression parameters and goodness of fit as additional analyses are 
run. The corner and slope are defined on Fig. 7. 

7. Results 
In total, 50 IDCs were assessed for the example building's performance at serviceability level (Sa(T=1.0s) = 
0.2 g) demands. The median drift in the undamaged building case at this scale is 0.5% drift. As Fig. 9 shows, 
the damaged building response is roughly equivalent to the undamaged building response below approximately 
2.5% initial motion peak story drift. In this case, the building did not sustain damage significant enough during 
the initial motion to affect the response. 

A similar trend emerged for DE level shaking, for which 39 IDCs were analyzed. In this case, the change 
in drift demand for a damaged building occurs around 3% initial motion peak story drift. The response below 
this threshold was virtually the same in the damaged building as in the undamaged one. In MCE level shaking, 
the effect of damage is not pronounced until the initial damage level reaches 5% drift. The ratio increases more 
sharply in serviceability cases than in DC and MCE cases. 

These results taken together, this building is not very sensitive to damage for serviceability, DE, or MCE 
response until significant drift demands have been reached. This building is a ductile and strong system with 
a deformation capacity of column hinges close to 10% story drift (Fig. 2b). When damage is small (drifts on 
the order of 2-3%), there is substantial remaining energy dissipation capacity in the building/components and 
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the demands are unchanged in the second motion. This occurs even though the building period has elongated, 
increasing displacement demands, but reducing spectral energy input. The MCE level shaking performance is 
least sensitive to damage because its performance depends mostly on energy dissipation. In other words, 
response at serviceability levels tends to be dictated by stiffness, whereas the change in response at MCE and 
collapse levels is affected by cyclic deterioration. These trends are consistent with research by past research 
on the response of ductile buildings in multiple earthquake events  [5,9,17]. We anticipate further investigation 
of the influence of subsequent motion intensity on damage threshold through application of this framework to 
additional buildings. 

 
Fig. 9 – Median ratio drift demand in damaged to undamaged building for each IDC at a) serviceability, b) 
DE, and c) MCE level motions versus the peak story drift experienced during the initial damaging motion.  

8. Conclusions 
This framework was developed to identify which measures of damage best predict future earthquake 
performance of a ductile RC frame building, and to assess when damage is substantive enough to meaningfully 
affect future performance.  The framework is illustrated through application to a modern, ductile, RC frame 
building. Physically, the results show that a "corner" damage condition threshold can be identified after which 
damage has an important influence on earthquake performance. The corner drift levels for this building are 
about 2%, 3% and 5% drift for serviceability, DE and MCE. These are roughly 20, 30 and 50% of the building 
deformation capacity. This example run also identified peak story drift as a strong indicator of future building 
performance. Methodologically, the framework was able to identify distinct changes in performance that are 
tied to reparability without undue computational burden. The machine learning based point selection algorithm 
selected points to efficiently improve the analysis set. The total analysis time is less than one week, whereas a 
similar level of detail using a brute force method would require several months of computational time on the 
same computer. 

Further work will include the assessment of structures with structural irregularities, nonductile frames, 
and older structures. This expanded work will allow researchers to identify not only damage metrics that 
predict future performance, but also which building characteristics most affect performance and the limiting 
damage values. 
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