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ABSTRACT 
 

Modeling uncertainty can have a significant impact on the assessed risk of 
earthquake-induced damage and collapse in a building obtained through the 
performance-based earthquake engineering framework. This paper quantifies the 
effect of modeling uncertainty on performance-based risk assessments, accounting for 
differences in software platforms, solution algorithm, element-types, and model 
parameter calculation or selection, using results of the 7-story reinforced concrete 
(RC) building blind prediction contest (2006) at University of California at San Diego 
(UCSD). The blind prediction test data provide a unique opportunity to quantify the 
influence of modeling uncertainty on structural response predictions.  

In this study, the bias and variability of predicted drift in the contest 
submissions are taken to represent modeling uncertainty. The modeling uncertainty 
quantified from the UCSD test submissions is combined with uncertainty due to 
record-to-record variability and a set of fragility curves are computed for different 
drift levels. The final fragility curves account for modeling and ground motion 
uncertainty. Results are compared with the results with no modeling uncertainty. The 
key contribution of this study is to investigate the uncertainty embedded in the 
response due to combination of ground motion and modeling uncertainty. 

 
INTRODUCTION 

 
In the assessment of the seismic performance of a building, two main sources 

of uncertainty are present: (a) uncertainty due to the selected ground motions used in 
the analysis, known as record-to-record uncertainty, and (b) uncertainty embedded in 
the simulation model, known as modeling uncertainty. Quantification and 
propagation of these sources of uncertainty through the assessment of seismic risk is 
one of the important aspects of the performance-based earthquake engineering 
(PBEE) framework. Uncertainty due to record-to-record (RTR) variability stems from 
variation in the response of the structure excited by different ground motions due to 
the specific characteristics of each record, such as frequency content. RTR 
uncertainty is incorporated in the PBEE framework through the development of 
robust techniques for ground motion selection and scaling whereby multiple ground 
motions, selected to represent the seismicity at the site of interest, are used in the 



assessment (Haselton et al. 2007). Modeling uncertainty stems from variation in the 
physical properties of the building components, as well as variation in the 
representation of these properties in an analysis model. Past research in the area of 
modeling uncertainty considered variation of different modeling parameters such as 
element strength, initial stiffness, hardening stiffness, plastic rotation capacity, and 
hysteretic energy dissipation capacity to quantify the significance of modeling 
uncertainty in seismic risk assessment (Ellingwood et al. 1980; Fardis and Biskinis 
2003; Haselton et al. 2007; Ibarra 2003; Lee and Mosalam 2005). Other researchers 
studied methods for propagating modeling uncertainties through seismic performance 
assessments using the first-order second–moment (FOSM) method (Haselton et al. 
2007), or a response surface with Monte Carlo simulation (Liel et al. 2009).  

State-of-the-art methods for seismic assessment have well-established 
methods for incorporating RTR variability. However, treatment of modeling 
uncertainty remains challenging. The term “modeling uncertainty”, as used here, 
reflects the uncertainty in the extent to which model represents the true structural 
response. This study evaluates the effect of modeling uncertainty using submissions 
to a blind prediction contest. In the recent years, different types of structures have 
been tested on shake tables for the purpose of evaluating seismic design criteria, 
investigating structural failure modes, or predicting structural response parameters. In 
some cases, before performing the experiment, teams are invited to predict the 
response of the structure in so-called “blind predictions”. Participants may predict the 
response using a variety of modeling techniques and analysis platforms, employing 
information from design drawings and material properties. The data submitted by 
participants provide a unique opportunity to study the uncertainty in the predicted 
response due to modeling. 

This study quantifies the significance of modeling uncertainties in seismic 
performance assessment, using results of a blind prediction contest for a 7-story RC 
building at UCSD in 2006. These modeling uncertainties reflect differences in 
software platform, solution algorithm, element type, and model parameter calculation 
or selection. The effect of some of these sources of uncertainties has not been 
investigated previously, due to the fact that in most of the past studies, the nonlinear 
model is simulated using a single software package. After quantifying the modeling 
uncertainty, this source of uncertainty is combined with the RTR variability in order 
to investigate the total uncertainty in the results.  

 
METHODOLOGY OF STUDY 

 
This study employs the methodology for assessing the seismic performance of 

a building developed by the Pacific Earthquake Engineering Research Center, which 
provides a probabilistic framework for relating ground motion intensity to structural 
response and performance, through nonlinear time-history simulation (Deierlein 
2004). Incremental Dynamic Analysis (IDA) is used to assess global performance as 
a function of ground motion intensity (Vamvatsikos and Cornell 2002). IDA results 
show the relationship between ground motion intensity and building response 
parameters, such as the peak interstory drift ratio, in the structure. The final outcome 



of IDA is a set of fragility functions, which define the probability of exceeding a 
particular drift level or damage state, as a function of the ground motion intensity.  

A key challenge in IDA is that the fragility curves so-developed reflect only 
one source of uncertainty, that coming from randomness of the selected ground 
motion records, and do not incorporate the uncertainty in the prediction of the drift 
level which is embedded in the modeling process. This limitation is significant 
because an analyst usually has only a single model of the structure of interest.   

The proposed methodology used to quantify and incorporate modeling 
uncertainties in the analysis proceeds as follows. First, IDA is performed on a 
nonlinear model of the case study building for a set of earthquake records, and a set 
of IDA curves generated, as illustrated in Figure 1a. These IDA curves consider only 
the randomness due to the earthquake records and are called “IDA-RTR” curves. 
Modeling uncertainty is then quantified by the variability in results predicted by the 
participants in the blind prediction contest. Specifically, model predictions of building 
response submitted by blind test participants are used to quantify histograms of 
modeled interstory drifts for a particular spectral acceleration level. These histograms 
are used to fit probability distributions associated with modeling uncertainty.  

 
Figure 1. Schematic drawing illustrating the proposed methodology to consider 

(a) RTR uncertainty; (b) modeling uncertainty representing the blind prediction 
test data; and (c) IDA curves generated to represent the modeling uncertainty 

 
In the next step, modeling and RTR uncertainties are combined. For this 

purpose, each point on the IDA-RTR curve is replaced by a set of randomly generated 
points with the same spectral acceleration as the original curve, but a distribution of 
drifts representing modeling uncertainty. The drifts are generated such that they are 
probabilistically consistent with the distributions generated in the previous step, as 
shown in Figure 1b; the distribution used to generate the modeling drifts depends on 
the drift level. The generated random numbers at different excitation levels are then 
connected to generate a set of “IDA-RTR-Modeling” curves, as shown in Figure 1c. 
This set of IDA curves represents the effect of modeling uncertainty, for a given IDA-
RTR curve. This process is repeated for all IDA-RTR curves, to generate a new set of 
IDA curves, known as “IDA-RTR-Modeling”, which incorporate the modeling 
uncertainty in addition to the RTR variability. This new set of IDA curves is used to 
compute the fragility curves associated with exceeding particular drift ratios of 
interest and the results are compared with those from the IDA-RTR curves.  
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APPLICATION OF THE PROPOSED METHODOLOGY 

Case study building. This paper examines the blind predictions submitted for a full-
scale 7-story RC wall building tested on the UCSD shaking table, shown in Figure 2. 
The tested structure represents a slice of a 7-story load bearing wall building typical 
of Los Angeles construction. The building slice has a reinforced concrete “web” wall, 
which is the lateral force resisting system, with two transverse “flange” walls, and a 
post tensioned (PT) segmental precast pier, which provides torsional stability. The 
floor system is a flat slab supported with steel gravity columns (Panagiotou and 
Restrepo, 2011). The building was designed based on a displacement-based method, 
which led to smaller member sizes and less reinforcement than what is required by 
force-based approach (Panagiotou and Restrepo 2011). The test was conducted to 
investigate the dynamic response of the building, including the interaction between 
wall, slab, and gravity system of the building (Panagiotou et al. 2011).  

 
Figure 2. View of the building tested at UCSD (Moaveni et al. 2011) 

In the experiment, four earthquake records were imposed on the building: 1) 
the longitudinal component of the 1971 San Fernando earthquake recorded at Van 
Nuys (EQ.1), which has Sa(T1) of 0.32g, 2) the transverse component of the same 
Van Nuys record, which has Sa(T1) of 0.75g, 3) the longitudinal component of the 
1994 Northridge earthquake recorded at the Oxnard Boulevard station (EQ.3), which 
has Sa(T1) of 0.60g , and 4) the 360° component of the 1994 Northridge earthquake 
recorded at the Sylmar station (EQ.4), which has Sa(T1) of 1.38g (Moaveni et al. 
2011).  

 
Nonlinear analysis of building. In order to assess the building’s seismic 
performance in this paper, the nonlinear 2D model of the building developed by 
Martinelli and Filippou (2009), is analyzed under a set of earthquake records. In this 
model, the shear wall is simulated with distributed inelasticity force-based beam-
columns (Spacone et al. 1996). The cross section is discretized in fibers that capture 
the interaction of the axial force and bending moment. The compressive behavior of 
concrete fibers is modeled with the modified Kent-Park material model (Kent and 
Park 1971); tensile behavior is modeled with a bilinear behavior with a linear elastic 
branch followed by a linear softening branch. The volumetric confinement effect is 



taken into account by the modified Kent-Park model. The nonlinear Menegotto-Pinto 
material model, modified by Filippou et al. (1983) to include isotropic hardening 
effects, is used for steel fibers. Each story is modeled with a nonlinear beam-column 
element with three integration points representing each of the web and flange walls. 
The post tensioned pier is modeled with linear elastic beam-columns. The connection 
between the flange and web wall are modeled with rigid end offsets. The mass is 
lumped at each floor. The footing under each wall is modeled with an elastic element. 
The period of the model is equal to 0.49s, very close to the experimental fundamental 
period of 0.52s. The ability of the model to predict the measured earthquake response 
of the 7-story RC shear wall specimen was demonstrated by the good agreement of 
the blind prediction results with the measured data, but it did not capture the lap-
splice failure observed in the experiment (Martinelli and Filippou, 2009).    

The model is analyzed using IDA to develop a fragility curve that accounts for 
the record-to-record variability. In IDA, the nonlinear structural model is subjected to 
a recorded ground motion, and dynamically analyzed to predict the structure’s 
response. The time-history analysis is repeated, each time increasing the scale factor 
on the input ground motion. This process is repeated for a large set of ground motion 
records. This study uses 35 of the 44 ground motions in the FEMA P-695 far-field set 
(FEMA 2009). Nine of the 44 ground motions are recognized as the pulse-like ground 
motions excluded from this analysis (Champion and Liel 2012). The IDA results of 
the nonlinear model for the selected ground motions are presented in Figure 4a. The 
use of the FEMA P-695 ground motion set is for illustration only; any set of ground 
motions selected according to established procedures could be used.  

Description of data. The data set from the blind prediction test includes structural 
response predictions for the 7 story building submitted by 21 participant groups for 4 
different ground motion time histories. Participants in the blind prediction 
competition were categorized in three groups: Engineering Practitioners (EP), 
Undergraduate Students (U), and Researcher Associates (RA). For each ground 
motion, participants predicted different response parameters of the building, such as 
maximum moment, maximum interstory drift ratio, maximum shear force, and 
maximum acceleration at each floor or story. A number of different software 
platforms were used by the participants including: Abaqus, OpenSees, SAP 2000, 
Adina, Ram Perform 3-D, and ETABS. The goal of this study is to quantify the 
modeling uncertainty in the blind prediction data and to assess its influence on the 
prediction of the ground motion intensity at which a structure experiences drift levels 
greater than a specified value. As a result, in this study, we focus on the uncertainty in 
model predictions of maximum interstory drift ratio, which are predicted for each 
story of the building for each time history. Interstory drift ratio is a dimensionless 
quantity computed as the difference in lateral deflection between floor i and floor i + 
1, divided by the height of the story.  Aleatory uncertainty associated with material 
properties is assumed to be reduced because modelers were provided with measured 
material properties. 

Table 1 reports the IDR values predicted by the practitioner groups for the 
first earthquake, i.e. EQ.1, as an example. The notation IDRij in this table refers to the 
interstory drift ratio for the ith earthquake record at the jth story. Table 1 also reports 
the median and standard deviation of data submitted by all participants for EQ.1, and 



the experimentally measured drift ratio. Five out of 21 participant groups are 
considered to be outliers and dropped from the data set. The outliers are selected 
based on engineering judgment; specifically, groups reporting predictions of the 
average IDR over all stories that is 10 times greater or smaller than the experimental 
value for any earthquake record were excluded. The outliers so-identified are thought 
to have a significant error in the modeling processes, biasing the drift distribution 
associated with modeling uncertainties. 

 
Table 1. Predicted (modeled) interstory drifts for the 7-story building for EQ.1 

Participant 
Group  IDR11 IDR12 IDR13 IDR14 IDR15 IDR16 IDR17 

EP1 0.003 0.007 0.009 0.011 0.011 0.012 0.012 
EP3 0.001 0.002 0.003 0.003 0.003 0.003 0.003 
EP4 0.002 0.004 0.005 0.006 0.006 0.006 0.006 
EP5 0.002 0.002 0.002 0.002 0.002 0.002 0.002 
EP6 0.003 0.003 0.003 0.003 0.002 0.002 0.001 
EP7 0.002 0.003 0.003 0.003 0.003 0.003 0.004 
EP8 0.001 0.002 0.003 0.004 0.004 0.004 0.004 

Median of all 
groups 0.002 0.003 0.003 0.003 0.003 0.003 0.004 

Standard 
deviation 0.001 0.002 0.002 0.003 0.003 0.003 0.004 

Experimental 
results 0.001 0.002 0.003 0.003 0.003 0.003 0.003 

Probability distributions of modeled IDR. Uncertainty in the prediction of IDR is 
not expected to follow the same distribution at all drift ratios because of the 
increasing complexity with modeling larger drifts reflecting greater nonlinearity in 
the structure. However, for a given drift level, we expect the distribution of modeled 
drifts to be similar, regardless of the story or earthquake record for which the drift 
was modeled and measured. To study the distribution of IDR obtained from blind 
predictions, 6 drift levels measured in the experiment corresponding to 𝛥!"# = 0.003, 
0.006, 0.009, 0.015, 0.018, and 0.022 are selected. (These values are rounded to the 
third decimal place.) Each experimental value is compared to the modeled drifts 
intended to predict that particular experimental value. In some cases this means that 
model predictions for different stories or earthquake records are combined, provided 
that all model values were intended to predict the same value of experimental drift, 
𝛥!"#. The experimental drift levels are selected based on two criteria: 1) for each 
value of drift, there are a significant number of corresponding modeling predictions 
reported by participants, and 2) there is enough separation between the selected drift 
ratios to consider the trend of variation in the modeling drift distribution with 
increasing IDR. Model predictions not corresponding to an experimental drift value in 
the list above were dropped from the data set. In total, more than 65% of the available 
data submitted by participants for the displacement field are used in this study. (The 
authors found that including the omitted in the analysis does not significantly change 
the findings.) 



All modeled drift ratios corresponding to a particular experimental drift 𝛥!"# 
are grouped together. For each drift level, two distributions are fitted. The first 
distribution is chosen as the best-fit distribution, using the Kolmogorov–Smirnov (K-
S) test to measure goodness-of-fit (Massey 1951). Since the best-fit distribution may 
not be well known, a second distribution which satisfies the K-S test with the 95% 
confidence level, but is more commonly used (e.g. normal, lognormal, etc.) is also 
fitted.  This second distribution is termed the “engineering fitted” distribution. Figure 
3 illustrates the histograms and engineering fitted distributions for two levels of 𝛥!"# 
and the parameters defining these distributions for each drift level are reported in 
Table 2. The results suggest that the data grouped for 𝛥!"#  values of 0.015 and 0.018 
follow a uniform distribution. This may be due to the limited number of data points at 
these drift ratios so data corresponding to these two drift levels are not considered in 
the subsequent analysis.  

The data presented in Table 1, and similar model predictions made for the 
other earthquake records, show a difference or “bias” between the median of the 
modeling data and the measured value in the experiment. Table 2 reports the bias for 
each group of data, computed as the difference between the median of modeled value 
and the experimental value (Montgomery and Runger 2010). This table shows that 
the models tend to under-predict drifts in comparison to the experiment. Table 2 also 
shows that the bias increases for larger experimental drifts, which correspond to 
higher levels of excitation. To study the distribution of drifts associated with 
modeling uncertainty, two cases are considered. In the first case, the “original” 
[uncorrected] data, as presented in Table 1, have been used to define the modeling 
IDR distribution directly. In the second case, the bias of data is removed by making 
the median of the modeling distribution the same as the experimental values, but the 
dispersion in the modeled data is preserved. This new set of data is called the 
“unbiased” [corrected] data set.  

 

 

 

 
Figure 3. Histograms and engineering distributions for the “original” prediction 

data corresponding to (a) 𝜟𝒆𝒙𝒑=0.003 and (b) 𝜟𝒆𝒙𝒑=0.006. 

Table 2. Statistics of the predicted (modeled) drifts for different experimental 
drift values 

Δexp 
Best Fit 

Distribution 

Engineering 
Fit 

Distribution 

Median of 
Modeled 

IDR  

σ of 
Modeled 

IDR* 

# of 
Modeled 
IDR data  

Bias 

0.003 Burr Lognormal 0.003 0.003 80 -0.0002 

(a) (b) 



0.006 Cauchy Lognormal 0.005 0.003 32 -0.0017 
0.009 Cauchy Lognormal 0.007 0.004 95 -0.0022 

0.015** Gen. Pareto Uniform 0.009 0.005 16 -0.0053 
0.018** Error Uniform 0.012 0.007 16 -0.0062 
0.022 Error Lognormal 0.016 0.007 64 -0.0055 

*σ is the standard deviation of the sample data  ** Not considered in later analyses  

Combination of modeling uncertainty with RTR uncertainty. In this section, the 
modeling uncertainty quantified in the previous section is combined with the RTR 
uncertainty using the approach described above. The modeling uncertainty is 
represented by histograms or engineering fitted distributions of the modeled drift 
values. The effect of modeling uncertainty will be separately considered for the 
“original” and “unbiased” data sets, for a total of four distinct cases: 1) histograms of 
the original data; 2) engineering distributions of the original data; 3) histograms of the 
unbiased data; and 4) engineering distributions of the unbiased data.  

Histograms with the original data. First, modeling uncertainty is quantified in the 
form of four histograms corresponding to the 𝛥!"#= 0.003, 0.006, 0.009, 0.022 and 
based on the original data. These histograms represent the modeling uncertainty 
associated with the prediction of a particular drift; each histogram is assumed to be 
valid for a specified range of drifts. For instance, the histograms corresponding to 
𝛥!"#= 0.003, is taken to represent the uncertainty in modeling drifts for drifts between 
zero and 0.0055. Similarly, the histograms corresponding to 𝛥!"#= 0.006, 0.009, and 
0.022 are taken as the drift distribution for modeled drifts in the ranges of 
0.0055<𝛥 ≤0.0085, 0.0085<   𝛥 ≤0.0155, and 0.0155<   𝛥 , respectively. Modeling 
uncertainty data are available up to a drift ratio of 0.022. The modeling drift 
distribution corresponding to 𝛥!"#= 0.022 is used for all drifts greater than 0.022.  

For each IDA-RTR curve, the modeling uncertainty histograms are used to 
develop IDA-RTR-Modeling curves. These new IDA curves are generated using a 
Monte Carlo approach, such that for a given excitation level on the IDA-RTR curve, 
fifty alternative drifts that are consistent with the histogram for the modeled data are 
simulated.1 For illustration purposes, ten IDA-RTR-Modeling curves generated for 
one IDA-RTR curve are shown in black in Figure 4b. This process is repeated for all 
of the IDA-RTR curves.  

To evaluate the effect of propagating the modeling uncertainty through the 
analysis, a set of fragility curves are computed at different drift levels separately for 
the IDA-RTR results and IDA-RTR-Modeling results and compared in Figure 5. 
These fragility curves represent the probability of exceeding a particular drift level, 
given a specified ground motion intensity. Fragility curves are developed first by 
computing the empirical CDF of exceeding drift from IDA results and then fitting a 
lognormal distribution to the data using the maximum likelihood method. Figure 5 
also reports the median and lognormal standard deviation of the lognormal fragility 
curves.  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Since the histograms shown are for a single value of 𝛥!"#, they are shifted if the IDA-RTR has a 
different value of  𝛥!"#. 



The incorporation of modeling uncertainty flattens the fragility curve 
(increasing the dispersion or standard deviation) and increases the median Sa value. 
The shift in the median indicates that not incorporating modeling uncertainty can be 
conservative at high excitation levels, i.e. for large Sa values. This conservatism 
occurs because the modeled drifts underestimate the true (experimental) drifts. The 
underestimation is likely due to the use of models that do not reflect the all sources of 
nonlinearity of the building. The results may also indicate that neglecting modeling 
uncertainty can be non-conservative at low excitation levels. This could be because of 
the lack of blind prediction data for drift ratios less than 0.003. Figure 5d shows that 
the significance of including the modeling variability decreases at the largest drift 
level (i.e. 0.02) and the relative difference between the dispersion of IDA-RTR and 
IDA-RTR-Modeling is smaller than at the other drift levels. This reduction of 
dispersion is observed because many of the IDA curves do not have data at this large 
of a drift. As shown in Table 2, the general trend is that the larger the drift, the greater 
the dispersion in modeled drift values, which increases the dispersion in the fragility 
curves. Due to the limited prediction data available at lower drift levels and 
difficulties in computing fragilities at higher drifts where IDA data are not available, 
we conclude that the fragility curves computed at drifts of 0.006 and 0.009 are the 
most representative of the effect of incorporating modeling uncertainty in the seismic 
assessment results.     

 

 

 

 
Figure 4. IDA results from nonlinear simulation of the 7-story building, 

representing: (a) RTR uncertainty, and (b) RTR and modeling uncertainty  
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Figure 5. Comparison between fragility curves computed considering RTR 

variability only (gray lines) and RTR and modeling variability (black lines) for 
the original data. The fragility curves computed represent the probability of 

drifts exceeding a) 0.003, b) 0.006, c) 0.009, and d) 0.02. 

Histograms with the unbiased data. In this section, the same procedure is repeated 
for the unbiased (corrected) data and the results are illustrated in Figure 6. This figure 
shows that removing the bias from the data virtually eliminates the shift in the 
median. However, the modeling fragility curve still has larger dispersion than the 
RTR-only curve because of the uncertainty in the drift prediction, even though on 
average, the modeled results give the true value.   
  

 

  

 
Figure 6.  Comparison between fragility curves computed considering RTR 

variability only (gray lines) and RTR and modeling variability (black lines) for 
the unbiased data. The fragility curves computed represent the probability of 

drifts exceeding a) 0.006 and b) 0.009. 
Fitted distributions with the original data and unbiased data. In this section, the 
same procedure, as explained in the previous two sections, is repeated, except that  
the randomly generated model drifts are simulated using the engineering 
distributions, instead of the histograms. The process is repeated for the original and 
unbiased data, and the median and standard deviation of the fitted fragility curves are 
presented in Table 3. For comparison purposes, the median and standard deviation of 
the previous results (Figures 5 and 6) are also summarized in Table 3. Comparison of 
the results shows that the distribution and histograms lead to very similar medians 
and standard deviation of the developed fragility curves. This finding implies that 
either of these two approaches can be implemented to incorporate the modeling 

(d) (c) 

Median =1.81[g] 
σln = 0.42[g] 
Median = 2.03[g] 
σln = 0.48[g] 

Median = 0.98[g] 
σln =  0.40[g] 
Median = 1.18[g] 
σln = 0.62[g] 

Median = 0.69[g] 
σln = 0.34[g] 
Median = 0.77[g] 
σln  = 0.59[g] 

Median = 0.98[g]  
σln = 0.40[g] 
Median = 1.02[g] 
σln =  0.57[g] 

(a) (b) 



uncertainty in seismic assessment process. However, using the engineering 
distribution is likely to be more straightforward in practice. 

Table 3. Median and standard deviation of the fragility curves representing 
uncertainty in RTR and modeling, obtained from histogram and distribution 
approaches 

Drift 

Histograms & 
Original data 

Histograms & 
Unbiased data 

Distributions & 
Original data 

Distributions & 
Unbiased data 

Median 
Sa(T1) [g] 

σln 
[g] 

Median 
Sa(T1) [g] 

σln 
[g] 

Median 
Sa(T1) [g] 

σln 
[g] 

Median 
Sa(T1) [g] 

σln 
[g] 

0.006 0.90 0.66 0.77 0.59 0.88 0.69 0.73 0.61 
0.009 1.18 0.62 1.02 0.57 1.21 0.61 1.02 0.51 

 
CONCLUSION AND RECOMMENDATIONS 
	
  

This study quantifies the effect of modeling uncertainty on seismic fragility 
assessments, using results of the 7-story RC building blind prediction contest at 
UCSD. The modeling uncertainty is presented in terms of drift distributions based on 
the modeled drift submitted by the contest participants. These distributions are 
evaluated at different drift levels measured during the experiment. The modeling drift 
distributions are propagated through the results of the nonlinear time history analyses 
that consider only the record-to-record (RTR) variability. The resulting IDA curves 
are used to compute the fragility curves to represent the probability of exceeding a 
particular drift level as a function of ground motion intensity. The results showed that 
incorporating the modeling uncertainty to the RTR variability results leads to an 
increase in the median Sa level and increase the dispersion of the fragility curve by 
the average of 25% and 73%, respectively. The predicted increase in the dispersion is 
greater than that obtained by other methods for quantifying modeling uncertainty (e.g. 
Haselton et al. 2007). Analyses results showed that the main portion of the shift in the 
median is due to the bias existing in the modeled data for this test.  

This study developed and tested the proposed methodology to incorporate the 
modeling uncertainty to the seismic assessment procedure based on blind prediction 
test data. The blind prediction test data represents a unique opportunity to quantify 
modeling uncertainties. The results of this study suggest that modeling uncertainties 
can be incorporated by introducing a drift distribution to represent the modeling 
uncertainty. However, the main challenge is understanding the modeling drift 
distributions, which involves more research to predict generalizable modeling drift 
distribution applicable to a wider range of buildings. The numbers and distributions 
presented in this paper are valid only for this case study building. A remaining 
question is whether the level of underprediction in the contest submissions is typical.  
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