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Abstract 

A primary goal of seismic provisions in building codes and retrofit legislation is to protect life safety 

through prevention of structural collapse. To evaluate the extent to which these specifications meet this 

objective, the authors have conducted detailed assessments of the collapse performance of both modern 

reinforced concrete (RC) special moment frames (SMF) and existing RC non-ductile moment frames.  

 

Many aspects of the assessment process, including the treatment of modeling uncertainties, can have a 

significant impact on the evaluated collapse performance.  Approaches for evaluating the effects of 

modeling uncertainties are described in this study. Uncertainties in strength, stiffness, deformation 

capacity, and cyclic deterioration are considered for ductile frame structures of varying heights. Due to 

the computationally intensive nature of these analyses, the effect of these modeling uncertainties is 

assessed through creation of a response surface from the results of sensitivity analyses. From the 

response surface, Monte Carlo simulation is used to quantify the impact of these uncertainties on the 

predicted collapse capacity of each structure.  

 

1. Introduction  

The process of assessing structural seismic performance at the collapse limit state through nonlinear 

simulation is highly uncertain.  For assessment of an individual building design, there is significant 

uncertainty in the future ground motion that may occur, both in terms of the intensity (given by the site 

specific hazard curve), and the frequency content and other characteristics of the ground motion 

(termed record-to-record variabilities).  Similarly, there are uncertainties in the structural modeling 

process and the extent to which the idealized model accurately represents real behaviour. Firstly, there 

may be several options of what type of model to use.  Once a particular model is chosen, the modeling 



parameters used in the structural model are again a source of uncertainty, as the actual strength and 

deformation may differ from the expected values.  These uncertainties are referred to as modeling 

uncertainties.  Additionally, if the assessment is based on a possible future design, there is also design 

uncertainty, which accounts for variability in engineering design choices, given the prescriptive code 

requirements that govern design.  Other sources of uncertainty, including human error and construction 

quality, are not considered in this study.   

 

These sources of uncertainty are critical components of the probabilistic assessment of a structure’s 

collapse capacity. Record-to-record variabilities are directly incorporated into the analysis procedure 

through use of a sufficiently large set of ground motion records.  The problem considered here is how 

to realistically and expediently quantify the effects of modeling uncertainties.  Many researchers have 

varied uncertain modeling parameters, including damping, mass, and material strengths, and concluded 

that these variations make a relatively small contribution to the overall uncertainty in seismic 

performance predictions.  However, these studies have focused primarily on pre-collapse performance.  

In contrast, we show that the modeling uncertainties associated with deformation capacity and other 

parameters critical to collapse prediction have a significant effect on the assessed collapse performance.   

 

To begin, we provide an overview of the collapse assessment procedure and results for a set of 

structures: RC moment frames in high seismic regions. We then review methods for quantifying the 

effects of uncertainty in element and system level modeling, and propose a procedure that combines 

response surface analysis and Monte Carlo simulation. This procedure is applied to three RC SMFs of 

varying heights.  Finally, we compare the results obtained in this study with first-order second-moment 

reliability methods, which are easier to implement, but rely on the validity of key, simplifying 

assumptions.  We focus primarily on the effects of modeling uncertainties on the spectral acceleration 

at collapse, but other measures such as the peak interstory drift ratio at collapse could also be explored.   

 

2. Overview of Collapse Assessment Procedure and Results  

This study is primarily concerned with assessing structural collapse due to earthquakes, focusing in 

particular on RC frame structures.  The procedure used for collapse assessment utilizes the 

performance-based earthquake engineering methodology developed by the Pacific Earthquake 

Engineering Research center, which provides a probabilistic framework for relating ground motion 

intensity to the structural response through structural simulation (Deierlein 2004).   

 

Simulation of global sidesway collapse uses the Incremental Dynamic Analysis (IDA) technique 

(Vamvatsikos and Cornell 2002).  In IDA, the analytical model of a structure is subjected to a ground 

motion record, and the structural response is simulated. This analysis is repeated, each time increasing 

the scale factor on the ground motion’s intensity, until that record causes structural collapse in a 

sidesway mode.  This process is then repeated for an entire suite of ground motion records, to capture 

the record-to-record uncertainty in the response.
1
  In these analyses, the ground motion intensity 

measure is the spectral acceleration at the first mode period of the building [Sa(T1)].  The outcome of 

the IDA procedure is an empirically obtained cumulative probability distribution relating probability of 

collapse to the Sa(T1) of the ground motion. When there are possible failure modes that are not 

captured in the simulation model, these can be incorporated through post-processing, combining 

                                                      
1
 For this study, the ground motions were selected to represent large earthquakes with moderate fault-rupture 

distances (i.e., non near-field conditions).  This is the basic Far-Field ground motion set selected by Haselton and 

Kircher as part of an Applied Technology Council project, ATC-63.   These records were selected without 

consideration of epsilon, a measure of spectral shape which has been shown to have a significant impact on 

collapse capacity (Haselton 2006).   



component or system fragility curves with the IDA results (see Liel et al. (2006)).  Several different 

metrics can be used to quantify collapse performance: collapse capacity margin (the ratio of median 

collapse capacity to the maximum considered earthquake (MCE) demand), probability of collapse 

conditioned on the MCE (or other hazard level of interest), and mean annual frequency of collapse 

(obtained by integrating the collapse probability distribution with the hazard curve for a particular site).  

 

This procedure was used to assess the performance of both modern and existing RC frame buildings.  

The nonlinear analysis model for each structure consists of a 2-D three-bay frame created in OpenSees, 

as shown in Figure 1.  The models capture material nonlinearities in beams, columns, and beam-to-

column joints, along with P-Delta effects.  The beam-column hinges are modeled using the backbone 

shown in Figure 1b and the associated hysteretic rules; the properties of these hinges are obtained from 

systematic calibration to 255 experimental tests, as described in Haselton et al. (2007).  The joints are 

modeled as finite size with a joint shear spring.  Mean values are utilized for all modeling parameters, 

in order to represent the expected behavior.    

 

Haselton (2006) studied 30 code-conforming RC SMFs of varying height (1 - 20 stories), and evaluated 

the collapse capacity of each structure.
2
  These structures are assumed to be at a specified site in Los 

Angeles in the transition zone, for which the hazard curve has been defined through probabilistic 

seismic hazard analysis (Goulet et al. 2007).  From the analysis, the collapse margins (relative to the 

MCE) range from 1.1 to 2.1 for this set of structures. The collapse probabilities conditioned on the 

MCE ground motion vary from 0.12 to 0.47.  The mean annual frequency of collapse (λcollapse) ranges 

from 2.2x10
-4

 to 25.5x10
-4

 collapses/year, corresponding to a collapse return period of between 400 and 

4500 years.
3
,
4
   These collapse assessments reveal that the collapse performance is relatively stable for 

structures of different heights, and that perimeter frames typically have worse performance than space 

frames (because of the higher inherent overstrength in space frame design and greater dominance of P-

∆ effects in perimeter frames).  A similarly comprehensive study of non-ductile RC moment frames, of 

the type constructed in the 1960s and 1970s in California, is underway.  In general, it is shown that 

these structures are considerably more likely to collapse in earthquakes due to the lack of capacity 

design requirements and detailing provisions (Liel et al. 2006).   

 

3. Treatment of Modeling Uncertainties  

3.1. Review of Previous Research 

Recognizing the uncertainties in the structural modeling process, a variety of approaches have been 

used to study the effects of these uncertainties on the resulting structural response and performance 

predictions, such as those described above for reinforced concrete frame structures.  

 

Sensitivity analysis provides a simple method for computing the effects of modeling uncertainties on 

response quantities of interest.  The effect of each random variable on structural response is determined 

by varying a single modeling parameter and re-evaluating the structure’s performance. These studies, 

                                                      
2
 These structures are fully designed according to the provisions of ASCE 7-02, ACI 318-02 and IBC 2003.   

3
 The values reported here include the effects of modeling uncertainties obtained through the FOSM procedure and 

the mean estimates approach (discussed later), where it is assumed σln,modeling = 0.45.  The σln,modeling = 0.45 value 

was obtained through a detailed study for a 4-story reinforced concrete building, and it was assumed that this value 

is appropriate for the other structures studied.  When structural modeling uncertainties are excluded from the 

analyses, λcollapse decreases to 0.3x10
-4

 to 8.3x10
-4

 collapses/year.   
4
 As noted previously, these collapse assessments are conservative, because they do not include an adjustment for 

spectral shape.   



eg. those conducted by Esteva and Ruiz (1989), Porter et al. (2002), Ibarra (2003), or Aslani (2005), are 

used to identify those modeling parameters that have the most significant impact on the response.   

 

First-order-second-moment (FOSM) reliability approaches provide a simple method for propagating 

modeling uncertainties to quantify their effect on structural response.  In FOSM, the variance of the 

response due to various sources of uncertainty is computed by assuming the limit state function is 

linear. The needed gradients of the linearized limit state function can be obtained through perturbation 

of individual random variables in a series of sensitivity analyses.  Unfortunately, the analyses may 

become inaccurate for highly nonlinear functions.  In addition, the FOSM method uses only 

information about the first and second moments of the input random variables (mean and variance), and 

is inappropriate for problems in which the modeling uncertainties may alter the prediction of the 

median as well as the dispersion (Baker and Cornell 2007).   

 

Several researchers have explored the effects of modeling uncertainties with FOSM, including Ibarra 

(2003), Lee and Mosalam (2005).  Haselton studied the effects of modeling uncertainties on the 

collapse capacity of a code-conforming 4-story RC SMF designed for a high seismic region in 

California (Haselton 2006; Haselton et al. 2006).  The authors used a finite difference approach to 

compute the sensitivity to each random variable for use in FOSM input.  When partial correlation 

assumptions were used, the most realistic case, the logarithmic standard deviation contribution from 

modeling and design uncertainties on collapse capacity is 0.45 (or roughly equivalent to the record-to-

record variability).  This work by Haselton et al. provides the basis for comparison for this study.   

 

An alternative approach uses Monte Carlo simulations to determine the effect of modeling uncertainties 

on the structural response predictions.  The Monte Carlo procedure generates realizations of each 

random variable, which are inputted into a simulation model, and the model is then analyzed to 

determine the collapse capacity.  When the process is repeated for thousands of sets of realizations a 

distribution on collapse capacity results associated with the input random variables is obtained.  The 

simplest sampling technique is based on random sampling using the distributions defined for the input 

random variables, though other techniques, known as variance reduction, can decrease the number of 

simulations needed.  These Monte Carlo procedures can become computationally very intensive if the 

time required to evaluate each simulation is non-negligible (Helton and Davis 2001; Rubinstein 1981).   

 

The computational effort associated with full Monte Carlo simulation can be reduced through 

combination with response surface analysis.  A response surface is a simplified functional relationship 

or mapping. As such, it can be used to approximate a limit state function as a function of selected input 

random variables.  The price of this efficiency is a loss of accuracy in the estimate of the collapse 

capacity, which depends on the degree to which the highly nonlinear predictions of structural response 

can be accurately represented by the simplified response surface (Helton and Davis 2001; Pinto et al. 

2005). Ibarra (2003) analyzed the collapse capacity of a single degree-of-freedom system and used a 

response surfaced to represent the collapse capacity as a function of post-capping stiffness.  Ibarra’s 

study found, for that particular case, that the simplified FOSM procedure, the full Monte Carlo 

procedure, and the combined response surface/Monte Carlo approach produced comparable result.   

 

Whichever procedure is used, correlations between the input random variables under consideration can 

determine how significantly the modeling uncertainties impact the structural response (Haselton 2006; 

Val et al. 1997).  Possible correlations include both correlations between the properties of a particular 

element, and correlations over the height of the building.  There is insufficient data to quantify these 

correlations, so expert judgment is typically used.  In general, increased correlation tends to increase 

the dispersion in the response quantity of interest, which generally leads to decreased collapse 

performance; the fully correlated case is typically considered to be conservative.   



 

Once the effects of modeling uncertainties have been predicted there is still significant debate related to 

interpretation of these results, centering on how the effects of modeling uncertainties should be 

combined with the effects of other sources of uncertainty, such as record-to-record variabilities. For this 

purpose, different sources of uncertainty are sometimes characterized as either “aleatory” (randomness) 

or “epistemic” (lack of knowledge).   

 

One common approach for combining the effects of different sources of uncertainty is the confidence 

interval approach, through which we can make statements about structural response fragilities at a 

specified level of confidence (Cornell et al. 2002).  The confidence interval method is illustrated in the 

collapse fragilities shown in Figure 2a.  Record-to-record variability (treated as aleatory) is shown by 

the cumulative distribution function obtained directly from IDA analyses (blue), and the epistemic 

uncertainty (related to modeling variability) creates the distribution on the mean(green).  The 

distribution associated with epistemic uncertainty may be obtained from FOSM, Monte Carlo 

simulations, or expert judgment.  In order to make predictions at a specified confidence level, the 

cumulative aleatory distribution is shifted to the appropriate percentile on the epistemic distribution.  

Thus, the probabilities associated with the shifted distribution in Figure 2a (red) are consistent with a 

90% prediction of confidence, accounting for both aleatory and epistemic sources of uncertainty.  

Although this approach is conceptually appealing, the resulting structural performance predictions 

become highly dependent on the level of confidence chosen.  In addition, it requires distinguishing 

between aleatory and epistemic uncertainties, which can quickly become a philosophical debate.  

 

A second approach, referred to as the mean estimates approach, can be used to combine the 

contributions of the epistemic and aleatory uncertainties in structural response fragilities.  Two 

assumptions are needed: first, it is assumed that the two distributions are independent and, second, that 

both can be well-described using lognormal distributions such that the epistemic uncertainty is 

represented by a lognormal distribution on the median collapse capacity (Cornell et al. 2002).  If these 

two conditions are satisfied, the logarithmic standard deviations associated with each can be combined 

using the square-root of the sum-of-the-squares approach (SRSS) to obtain the total variance associated 

with the fragility.  When the mean estimates approach is used, the median is unchanged when modeling 

uncertainties are incorporated, but the variance increases, as shown in Figure 2b. This approach does 

not distinguish between aleatory and epistemic uncertainties.   
 

A third approach is similar to the mean estimates approach, except that it does not rely on the 

assumption of independence, and can be used to quantify the effects of modeling uncertainty on both 

the mean and variance of the structural response fragility.  By viewing the results of Monte Carlo 

simulations as alternate potential descriptions of reality, we interpret both the modeling and record-to-

record uncertainties as leading to uncertainties in the probabilities defining the collapse fragility curve 

at each spectral acceleration level.  The combined (mean) fragility is computed from the expected value 

of the probability at each spectral acceleration level.  (See Figure 5.) 

3.2. Procedure for Evaluating Effects of Modeling Uncertainties 

 

In this study, we use the response surface methodology to quantify the effects of modeling uncertainties 

on collapse capacity.  The most complete method, the full Monte Carlo procedure, is infeasible because 

of the computationally intensive nature of the analysis (it takes approximately 160 minutes to compute 

the mean collapse capacity for one set of realizations of the input random variables).  The simplest 

method, FOSM with mean estimates approach, is unable to capture the shift in the median of the 



distribution, and is insufficient to capture the effects of model uncertainties (especially where the 

median collapse capacity is small relative to the site seismic hazards).  

 

Firstly, sensitivity analyses are used to probe the effects of modeling variables on the collapse capacity 

of the system.  The results of the sensitivity analysis are used to create a response surface using 

regression analysis. The response surface has a second-order polynomial functional form, which is 

capable of representing asymmetric response to modeling (random) variables, and interactive effects 

between the random variables.  Following creation of the response surface, Monte Carlo simulation is 

used to obtain a suite of sample realizations for the set of random variables under consideration.  For 

each set of realizations, the collapse capacity of the structure is computed from the response surface.  

The outcome is a set of predicted collapse capacities for the structure, which represent the combined 

effect of modeling and record-to-record uncertainties.  These results are then combined through the 

third approach described above.   

 

4. Evaluation of Effect of Modeling Uncertainties on Case Study Structures 

In this study, the collapse capacities of ductile RC SMF structures of three different heights (1, 4 and 12 

stories) are assessed.  All structures have 20 ft. bay spacing, and have 13 ft. story heights except at the 

first story (15 ft.).  The collapse assessment was performed using as the procedure described in Section 

2, discussed in more detail in Haselton (2006).  A summary of the main metrics of collapse 

performance is shown in Table 1.  These measures include only the effects of record-to-record 

uncertainties associated with the variability in ground motions, and are based on results for the model 

with mean values for all modeling parameters.   

 

For each of these structures, we consider uncertainty in the modeling parameters that define the lumped 

plasticity plastic hinges for beams and columns.  These hinges are modeled using a material model 

developed by Ibarra and Krawinkler (2005). The backbone (Figure 1b) and hysteretic rules are defined 

by six parameters: flexural strength (My), initial stiffness, post-yield (hardening) stiffness, capping 

point (θcap,pl), post-capping stiffness (θpc) and cyclic deterioration (λ).  Each of these parameters is 

assumed to be lognormally distributed, and the mean and standard deviation are obtained from previous 

research (Haselton et al. 2007).  In this study, hardening stiffness is neglected because of its very small 

influence on collapse capacity.  For simplicity, other parameters related to element level modeling (eg. 

pinching and residual strength) and system level behaviour (eg. damping, mass, live and dead loading) 

are not considered; earlier sensitivity studies found that modeling parameters related to component 

strength and deformation capacity had the most significant effect on the collapse assessment (Haselton 

2006).  The uncertainty associated with the modeling and behaviour of reinforced concrete joints is also 

neglected for these structures, because capacity design provisions and transverse reinforcement 

requirements for joints have been shown to be sufficient to ensure that failure occurs outside the joints.   

 

If each of the random variables discussed in the preceding paragraph were investigated individually the 

sensitivity analyses would quickly become extremely time intensive, requiring examination of 5 random 

variables for each plastic hinge location in the analytical model.  To further reduce the number of 

variables under consideration, we make assumptions about correlations, at both the element and 

building level.  At the element level, two meta random variables are created. The strength/stiffness meta 

variable assumes that strength and stiffness are perfectly correlated within the element.  The ductility 

meta variable assumes that plastic rotation capacity, cyclic deterioration, and post-capping stiffness are 

perfectly correlated. These groupings are assumed, but a study of the correlations among these random 

variables (from the calibration results in Haselton et al. 2007) reveals that each random variable does 

tend to be more highly correlated with the other random variables within its group.   Further 



correlations are assumed at the structural level; we assume that beam strength/stiffness is perfectly 

correlated over the entire structure, and likewise for column strength/stiffness, column ductility and 

beam ductility meta variables.  These correlation assumptions leave four meta variables, each assumed 

to be lognormally distributed. These are all normalized random variables, and their values reflect the 

number of standard deviations that the realization is from the mean value. 

 

Based on these four random variables, sensitivity analyses are conducted to quantify the effects of each 

modeling variable on the collapse distribution.  The realizations of random variables used in the 

sensitivity analysis are based on central composite design, including star points (in which only one 

random variable is changed at a time) and factorial points (capturing interactions between the random 

variables) (Pinto et al. 2005).  In total, 33 sensitivity analyses were conducted for each structure, and 

each random variable was perturbed a maximum of 1.7 standard deviations away from the mean.  For 

each sensitivity analysis, a nonlinear model is created with modified element material properties, and 

the collapse analysis is run with a subset of 20 earthquake records.
5
  A summary of the results of the 

sensitivity analysis for the 4-story SMF is shown in Figure 3.  Of the four random variables, column 

strength/stiffness and column ductility have the largest effect.  Beam strength/stiffness has an inverse 

effect due to the benefit having weak beams relative to the columns. It is also noteworthy that all the 

random variables have an asymmetric effect, ie. improvement and degradation of a capacity random 

variable do not have equivalent positive and negative effects on the response.   This characteristic is 

problem for FOSM analysis, which cannot capture this nonlinearity.  

 

The sensitivity analysis results are used to create a response surface that describes the collapse capacity 

[ln(Sa(T1))] as a function of the input random variables.  The response surface is the second-order 

polynomial that best fits the data, obtained using the regression analysis capabilities of Matlab.  For the 

4-story building, the fitted polynomial is partially described in Equation (1)
 6
:  

...)(05.0)(01.0)(07.0)(20.0)(08.026.0))(ln( 2
1 +−+++−= BSCDBDCSBSTSa    (1) 

where BS refers to beam strength/stiffness, BD refers to beam ductility, CS refers to column 

strength/stiffness and CD refers to column ductility. Since these are normalized random variables, when 

all meta variables are 0 all random variables are at their mean values, and the results should be 

consistent with the mean model; Eqn. (1) predicts exp(0.26) = 1.30g, compared to 1.30g in Table 1.   A 

graphical representation of the response surface is provided in Figure 4. As expected, column 

strength/stiffness, column ductility and beam ductility all have a positive effect on the collapse capacity 

of the structure, while beam strength/stiffness has an inverse effect.  The response surface obtained in 

(1) is evaluated according to statistical measures of goodness of fit. In particular, the R
2

 value, which 

characterizes how much of the variability is captured by the regression, is 0.99.  The p-value of 1.11 x 

10
-16 

strongly indicates statistical significance. In addition, the variance inflation factors are computed 

to be << 10, indicating that collinearity is not a problem. Similar results are obtained for the 1 and 12 

story SMFs.  

 

Monte Carlo simulations are conducted using the response surfaces created for each structure.  For each 

simulation, realizations of each of the different random variables are generated, in keeping with the 

lognormal assumption for the meta random variables.  From these realizations, the response surface is 

used to obtain a prediction of the collapse capacity of the structure which the simulation represents.  

Ten thousand simulations were performed, and the predicted collapse capacity for each was obtained.    

 

                                                      
5
 This subset of earthquake records was chosen to reduce the computational times needed.  The response spectra of 

this subset was observed to be characteristic of the response spectra of the whole set.   
6
 The coefficients on higher order interaction terms are not shown here for simplicity.  



The final step is to recreate the cumulative distribution of collapse, incorporating the information from 

the Monte Carlo simulations that includes the effects of modeling uncertainties.  Each simulation 

predicts a value of the collapse fragility at each spectral acceleration level; by taking the expected value 

of these predictions the final fragility is obtained.  This process is illustrated in Figure 5, for the 4-story 

structure.  The final probability distributions for collapse capacity of the 1, 4, and 12 story structures 

are shown in Figure 6, and these effects are summarized in Table 2.  The effect of incorporating 

modeling uncertainties is to decrease the prediction of the median and increase the dispersion of the 

collapse fragility.  However, the extent of the effect depends on the structure under consideration.  The 

base case, no consideration of modeling uncertainty, is highly unconservative.  Table 2 also illustrates 

how choices about how to incorporate modeling uncertainty affect the prediction of the mean annual 

frequency of collapse.  Figure 6 compares the results obtained by a simplified FOSM approach 

assuming σln,modeling =  0.45, as described previously.
3
  At the left tail, the FOSM-obtained CDFs (using 

the mean estimates approach) are relatively close to those obtained from the Monte Carlo simulation.  

In this study the mean annual frequencies computed using the FOSM/mean estimate approach and the 

full Monte Carlo/response surface approach are fairly close, but this result may be significantly 

different for non-ductile structures.  

 

The Monte Carlo simulation also allows us to conduct a parametric study of the effects of correlation 

assumptions between the meta random variables. In the results presented thus far the four meta random 

variables are assumed to be uncorrelated.  Two other sets of correlation assumptions are considered for 

the 4-story structure.  In the first case BS and CS are assumed to be correlated, as are BD and CD, but 

there is no correlation assumed between the two groups.  In the second case, BS and BD are assumed to 

be correlated, as are CS and CD.  For the first case, full correlation leads to a 9.3% increase in the 

median collapse capacity, reducing the overall effect of considering modeling uncertainty.  This 

suggests that the relative difference in beam and column strength and beam and column ductility is a 

larger factor in determining collapse capacity than the absolute values.  In the second case, as the 

assumed level of correlation increases the median collapse capacity decreases (by 5.6% in the fully 

correlated case) and the dispersion increases. At higher levels of correlation it becomes more likely that 

beam behaviour is either very good (in terms of both strength and ductility) or very bad.  Since poor 

behaviour tends to decrease the collapse capacity more than good behaviour increases it, the median is 

further reduced as higher levels of correlation are assumed.  

 

5. Conclusions  

The results of this study, which utilizes Monte Carlo simulation in conjunction with a fitted response 

surface, demonstrate that incorporation of modeling uncertainties can have a significant effect on the 

collapse fragility obtained.  Neglecting these effects is nonconservative.   

 

For the ductile RC moment frames considered in this study, explicit consideration of uncertainties 

associated with element strength/stiffness and ductility may decrease the median collapse capacity by 5 

to 21%.  This decrease in collapse capacity occurs because the effects of the random variables on the 

collapse response are asymmetric, and tend to have a larger negative than positive effect. The 

dispersion of the collapse fragility also increases, by between 16 and 23% for the case study structures.  

Variation in the importance of modeling uncertainties for the three different structures is likely due to 

the possible failure modes in the structure and the propensity of the modeling uncertainties to alter the 

most likely failure mode.  In particular, the 1-story building has essentially one failure mode consisting 

of hinging in the column bases and hinging in the columns or beams at the 1
st
 floor.  In contrast, there 

are nearly ten observed failure modes for the 4-story building, and this may be associated with the 

larger effect of modeling uncertainties in this case.  Correlations also have a significant impact on 



collapse performance predictions; the correlation cases considered here show a 5 – 10% change in the 

median collapse capacity.  Further cases of building level correlations, particularly for the 4-story 

building, are a topic for future research.   

 

These results also suggest that for a ductile well-performing structure (ie. the MCE is significantly 

below the median collapse capacity) the simplified FOSM approach gives reasonable estimates, 

because the lower tails of the collapse distributions obtained in the two cases are relatively similar.  The 

FOSM approach, however, cannot predict a shift in the median value, which is important for some 

structures.  Moreover, for non-ductile structures which have significantly lower collapse capacities 

relative to the site hazard level, differences at the upper end of the collapse distribution will become 

more critical and the FOSM results show poor agreement with the Monte Carlo results.   

 

These results point more generally to the potential importance of characterizing and propagating 

uncertainties appropriately.  Because simplified approaches may have a large effect on calculated risks 

the accuracy of simplifying assumptions should be considered with care when the results will impact 

important decisions.   
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Table 1: Collapse metrics for case study ductile frame structures 

Design ID
Num. of 

Stories

Framing 

System
T1 (s)

Mean Sag.m., 

collapse (g)

Margin compared to 

MCE

P[collapse|

MCE]
λcol x 10 

-4 Collapse Mode (most 

frequently occuring)

2061 1 space 0.42 2.95 2.11 0.07 1.2 1-story collapse mechanism

1003 4 perimeter 1.12 1.3 1.71 0.09 1.7
(1) 2nd story mechanism; (2) 

Mechanism in stories 1 and 2

1013 12 perimeter 2.01 0.61 1.32 0.26 6.7
2; (2) Mechanism in stories 1,2 

and 3
 

*Model with mean parameters, subset of 20 earthquake records 

 

Table 2: Effect of modeling uncertainties on median and dispersion of collapse fragility and 

comparison of λcollapse with different methods of computing modeling uncertainty.  

 

Num. of 

Stories

% change in 

median

% change in 

dispersion

No consideration of 

modeling 

uncertainty

FOSM
3
, where 

σln,modeling = 0.45
This study

1 -5% 16% 1.2 4.1 1.6

4 -21% 23% 1.7 6.1 5.9

12 -9% 18% 6.7 17.0 12.0

Effect of Modeling Uncertainty 

in this Study
λcollapse (x 10

-4
)
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Figure 1:  Schematic diagram of analytical model, showing (a) generalized model configuration and 

(b) nonlinear material features of beam-column hinges.   
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Figure 2:  Collapse fragilities for a 4-RC frame structure, illustrating (a) the confidence interval 

approach and (b) the mean estimates approach. [After Haselton (2006)] 

 

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

2

4

6

8

10

12

Collapse Capacity: S
a
(T

1
=1.12s) [g]

 

 

Histogram

Mean of all analyses

Model with mean parameter values

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Beam Strength

Column Strength

Beam Ductility

Column Ductility

S
a
 (T

1
 = 1.12s) [g]

 

 

model with mean

parameter valuesmean of all

analyses

decrease

in

beam

strength

increase

in

beam

strength

 
Figure 3: (a)  Histogram showing the results of sensitivity analysis for the 4-story SMF. (b) Tornado 

diagram from sensitivity analysis results.   

 

 
Figure 4: Graphical representation of the polynomial response surface obtained for the 4-story 

structure. Each of these represents a slice of a multi-dimensional surface. In (a) the effects of column 

strength/stiffness and beam strength/stiffness are shown, while beam ductility and column ductility are 

held constant (at 0).  Likewise, Figure 4(b) illustrates the effects of varying beam and column ductility.  
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Collapse CDF, neglecting model uncertainty

Collapse CDF, including model uncertainty (Response surface)

 
Figure 5: (a) Histogram of collapse probabilities obtained form Monte Carlo simulations at Sa = 1.91g 

and (b) Computed collapse CDF with histograms superimposed at selected Sa levels. 
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Collapse CDF, neglecting model uncertainty

Collapse CDF, with model uncertainty (Response surface)

Collapse CDF, with model uncertainty (FOSM)
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Collapse CDF, neglecting model uncertainty

Collapse CDF, including model uncertainty (Response surface)

Collapse CDF, including model uncertainty (FOSM)
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Figure 6: Cumulative CDFs obtained for (a) 4-story building, (b) 12-story building and (c) 1-story 

building.   


